Thèse soutenue

Modélisations numériques avancées pour la prédiction des courants dans les dispositifs CMOS ultimes
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Fabio Goncalves Pereira
Direction : Marco PalaDenis RideauFrançois Triozon
Type : Thèse de doctorat
Discipline(s) : Nanoélectronique et nanotechnologie
Date : Soutenance le 11/07/2016
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Institut de microélectronique, électromagnétisme et photonique - Laboratoire d'hyperfréquences et de caractérisation (Grenoble)
Jury : Président / Présidente : Gérard Ghibaudo
Examinateurs / Examinatrices : Raphaël Clerc
Rapporteurs / Rapporteuses : Arnaud Bournel, Marc Bescond

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Parmi les plus important dispositifs pour l'industrie des semi-conducteurs, le transistor “Metal Oxide Semiconductor Field-Effect Transistor” (MOSFET) est largement utilisé pour le développement d'un grand nombre d'applications électroniques. La miniaturisation de ces dispositifs MOSFET a été un processus très efficace pour améliorer la performance de la technologie “Complementary Metal-Oxide Semiconductor” (CMOS). La mise à l'échelle des transistors selon “scaling rules” a permis l'amélioration des performances jusqu'à nœud technologique 90 nm, mais la diminution continue des dimensions MOSFET fait face à des limitations physiques et économiques. Afin de surmonter ces limitations et de parvenir à l'exigence de performance, plusieurs “boosters” ont été explorées par l’industrie des semi-conducteurs, notamment l'utilisation de dispositifs efficaces tel que "Fully Depleted Silicon On Insulator" (FDSOI), dont l'architecture a été choisie pour être explorée dans ce travail.Pour la technologie CMOS ultime, la modélisation fiable du transport électronique est une préoccupation majeure. Ce travail de thèse vise à améliorer la modélisation de dispositifs ultimes FDSOI, concentré sur le transport des porteurs. Dans ce scénario, “Technological Computer-Aided Design” (TCAD) basé sur des modèles Densité-Gradient et de Dérive-Diffusion se présente comme un outil rapide et puissant pour soutenir le développement technologique dans le secteur technologique. Cependant, nous avons montré que leur précision pour prédire les nœuds avancés est souvent douteuse. Afin de surmonter ce problème, nous avons présenté un outil de simulation à deux dimensions (UTOXPP) basé sur des modèles physiques et qui est implementé sur une efficace architecture C++ avec une bonne interface graphique. Au moyen de la méthode Finite-Difference, nous décrivons une stratégie de modélisation complète pour les parties les plus importantes de ce outil, à savoir 1.5D Poisson-Schrödinger, Quantum Drift-Diffusion et les modèles de mobilité de la formulation Kubo-Greenwood et de la fonction de Green hors equilibrium (NEGF). Les résultats de simulation ont montré l'efficacité de UTOXPP pour résoudre les effets quantiques à la fois pour la distribution de charge et également pour le transport des dispositifs choisis. L'objectif de ce travail de thèse a été réalisée puisque UTOXPP se montré capable de fournir des résultats fiables et rapides pour les nœuds avancés, raison d'être un excellent choix pour l'usage quotidien dans la industrie.