Thèse soutenue

Etude et optimisation de capacités MIM 3D à haute densité d'énergie fortement intégrées sur silicium
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Sandrine Madassamy
Direction : Alain SylvestreDenis Buttard
Type : Thèse de doctorat
Discipline(s) : Génie électrique
Date : Soutenance le 24/06/2016
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire de génie électrique (Grenoble)
Jury : Président / Présidente : Jinbo Bai
Examinateurs / Examinatrices : Frédéric Voiron
Rapporteurs / Rapporteuses : Costel-Sorin Cojocaru, Alain Bravaix

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Le stockage de l’énergie reste une problématique majeure pour le développement d’objets embarqués (Internet of Things) à faible facteur de forme. En effet, pour le stockage et la restitution d’énergie électrique, les dispositifs les plus couramment utilisés sont les batteries, les supercondensateurs et les condensateurs électrochimiques ou céramiques. Toutefois, le contexte de la miniaturisation nécessite de fabriquer des systèmes de stockage à forte densité d’intégration, compatibles avec des techniques d’intégration de type SIP (System in Package) et ultimement SoC (System on Chip). Or, les technologies connues dans l’art antérieur produisent des composants à forte épaisseur, via des filières technologiques exotiques, incompatibles avec une co-intégration directe sur des composants silicium. Pour répondre à ces exigences, nous proposons une nouvelle approche pour l’intégration de condensateurs de très faible épaisseur sur silicium. Ces condensateurs présentent une meilleure fiabilité et de meilleures performances en linéarité que les condensateurs céramiques et peuvent stocker une densité énergétique proche de celle d’un condensateur électrochimique.Cette thèse est axée sur la conception, le développement, la réalisation, la caractérisation électrique et fiabilité de capacités MIM (Métal/Isolant/Métal) à forte densité d’intégration et présentant une forte densité énergétique. Ces condensateurs sont modelés dans une nanostructure poreuse ordonnée et développée par un procédé électrochimique. Cette nanostructure 3D permet de décupler la surface spécifique développée, par rapport à une structure planaire simple ou une microstructure 3D telle qu’actuellement exploitée par la société IPDIA. Ce nanocomposant MIM comportant un isolant à base d’alumine, déposé par ALD (Atomic Layer Deposition) d’une épaisseur variant entre 15nm et 21nm. Pour cette gamme d’épaisseur, une densité de capacité de l’ordre de 200nF/mm² à 300nF/mm² est obtenue sur une simple structure MIM, avec un champ de claquage de l’ordre de 7MV/cm et une densité d’énergie volumique maximale de 1.3mWh/cm3. Cette dernière valeur est supérieure d’une décade aux technologies actuellement exploitées par la société IPDIA. Une attention particulière a été apportée à la réduction des parasites de la structure, et lui permettant ainsi de répondre à des transitions rapide en courant. Pour cela, la résistance série de ces structures a été optimisée par l’amélioration du contact entre les nanostructures MIM et les électrodes externes. La stabilité de la capacité MIM en température et en tension est comparable aux performances des technologies de référence IPDIA (respectivement avec un coefficient thermique de 193ppm/°C et un coefficient de tension de 489 ppm/V2), lesquelles sont basées sur une structure composite de type ONO (multicouche oxyde-nitrure). Elle est par ailleurs meilleure que celle observée pour les condensateurs céramiques multicouches disponibles sur le marché. Notre capacité présente également, une excellente robustesse en température et a été utilisée jusqu’à 375°C. Les performances démontrées sur les prototypes réalisés au cours de ce travail, permettent d’envisager un vaste domaine d’applications, incluant des applications de stockage, de filtrage de rails d’alimentation, de mise en forme de signaux analogiques et de puissance. Le niveau de maturité atteint sur les premiers démonstrateurs permet d’envisager un transfert industriel dans les mois à venir.