Thèse soutenue

Modélisation multi-échelle et hybride des maladies contagieuses : vers le développement de nouveaux outils de simulation pour contrôler les épidémies

FR  |  
EN
Auteur / Autrice : Mohammad Hessam Hessami
Direction : Nicolas Glade
Type : Thèse de doctorat
Discipline(s) : Modèles, méthodes et algorithmes en biologie, santé et environnement
Date : Soutenance le 23/06/2016
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale ingénierie pour la santé, la cognition, l'environnement (Grenoble ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Techniques de l’ingénierie médicale et de la complexité - Informatique, mathématiques et applications (Grenoble)
Jury : Président / Présidente : Emmanuel Drouet
Examinateurs / Examinatrices : Olivier Bastien
Rapporteurs / Rapporteuses : Brian Williams, Pascal Ballet

Résumé

FR  |  
EN

Les études théoriques en épidémiologie utilisent principalement des équations différentielles pour étudier (voire tenter de prévoir) les processus infectieux liés aux maladies contagieuses, souvent sous des hypothèses peu réalistes (ex: des populations spatialement homogènes). Cependant ces modèles ne sont pas bien adaptés pour étudier les processus épidémiologiques à différentes échelles et ils ne sont pas efficaces pour prédire correctement les épidémies. De tels modèles devraient notamment être liés à la structure sociale et spatiale des populations. Dans cette thèse, nous proposons un ensemble de nouveaux modèles dans lesquels différents niveaux de spatialité (par exemple la structure locale de la population, en particulier la dynamique de groupe, la distribution spatiale des individus dans l'environnement, le rôle des personnes résistantes, etc.) sont pris en compte pour expliquer et prédire la façon dont des maladies transmissibles se développent et se répandent à différentes échelles, même à l'échelle de grandes populations. La manière dont les modèles que nous avons développé sont paramétrés leur permet en outre d'être reliés entre eux pour bien décrire en même temps le processus épidémiologique à grande échelle (population d'une grande ville, pays ...) mais avec précision dans des zones de surface limitée (immeubles de bureaux, des écoles). Nous sommes d'abord parvenus à inclure la notion de groupes dans des systèmes d'équations différentielles de modèles SIR (susceptibles, infectés, résistants) par une réécriture des dynamiques de population s'inspirant des réactions enzymatiques avec inhibition non compétitive : les groupes (une forme de complexe) se forment avec des compositions différentes en individus S, I et R, et les individus R se comportent ici comme des inhibiteurs non compétitifs. Nous avons ensuite couplé de tels modèles SIR avec la dynamique globale des groupes simulée par des algorithmes stochastiques dans un espace homogène, ou avec les dynamiques de groupe émergentes obtenues dans des systèmes multi-agents. Comme nos modèles fournissent de l'information bien détaillée à différentes échelles (c'est-à-dire une résolution microscopique en temps, en espace et en population), nous pouvons proposer une analyse de criticité des processus épidémiologiques. Nous pensons en effet que les maladies dans un environnement social et spatial donné présentent des signatures caractéristiques et que de telles mesures pourraient permettre l'identification des facteurs qui modifient leur dynamique.Nous visons ainsi à extraire l'essence des systèmes épidémiologiques réels en utilisant différents modèles mathématique et numériques. Comme nos modèles peuvent prendre en compte les comportements individuels et les dynamiques de population, ils sont en mesure d'utiliser des informations provenant du BigData, collectée par les technologies des réseaux mobiles et sociaux. Un objectif à long terme de ce travail est d'utiliser de tels modèles comme de nouveaux outils pour réduire les épidémies en guidant les rythmes et organisation humaines, par exemple en proposant de nouvelles architectures et en changeant les comportements pour limiter les propagations épidémiques.