Jeux à objectif compétitif sur les graphes
Auteur / Autrice : | Simon Schmidt |
Direction : | Sylvain Gravier |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques et Informatique |
Date : | Soutenance le 15/12/2016 |
Etablissement(s) : | Université Grenoble Alpes (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....) |
Partenaire(s) de recherche : | Laboratoire : Institut Fourier (Grenoble) |
Jury : | Président / Présidente : Dominique Duval |
Examinateurs / Examinatrices : Sylvain Gravier, Eric Duchêne, Michel Mollard | |
Rapporteurs / Rapporteuses : Eric Sopena, Olivier Togni |
Mots clés
Résumé
Dans cette thèse nous étudions trois jeux à objectif compétitif sur les graphes. Les jeux à objectif compétitif proposent une approche dynamique des problèmes d'optimisation discrètes. L'idée générale consiste à associer à un problème d'optimisation (coloration, domination, etc.) un jeu combinatoire partisan de la façon suivante. Deux joueurs construisent tour à tour la structure reliée au problème d'optimisation. L'un d'eux cherche à ce que cette structure soit le plus optimale possible, tandis que l'autre essaye de l'en empêcher. Sous l'hypothèse que les deux joueurs jouent optimalement, la taille de la structure obtenue définit un invariant ludique.Nous commençons par étudier une variante 1-impropre du jeu de coloration, qui est le premier et le plus étudié des jeux à objectif compétitif. Dans ce jeu, les joueurs colorient les sommets d'un graphe de sorte que deux sommets adjacents ne partagent jamais la même couleur. Dans la version 1-impropre, un sommet peut avoir au plus un voisin ayant la même couleur que lui. Nous considérons ensuite le jeu de domination, dans lequel les deux joueurs doivent construire un ensemble dominant, c'est-à-dire un ensemble de sommets du graphe tel que tout autre sommet est adjacent à l'un des membres de cet ensemble. Finalement, nous définissons un nouveau jeu à objectif compétitif, relié au problème de coloration distinguante. Dans ce jeu, il s'agit de construire une coloration qui n'est invariante par aucun des automorphismes du graphe. Nous soulevons plusieurs interrogations stimulantes concernant ce nouveau jeu, notamment sur la caractérisation des graphes ayant un invariant ludique infini, par l'existence d'automorphismes d'ordre deux.