Thèse soutenue

Géométrie des surfaces singulières

FR  |  
EN
Auteur / Autrice : Clément Debin
Direction : Gérard Besson
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 09/12/2016
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Mathématiques, sciences et technologies de l'information, informatique (Grenoble ; 1995-....)
Partenaire(s) de recherche : Laboratoire : Institut Fourier (Grenoble)
Jury : Président / Présidente : Erwan Lanneau
Examinateurs / Examinatrices : Francois Fillastre
Rapporteur / Rapporteuse : Jean-Marc Schlenker, Rafe Mazzeo, Marc Troyanov

Résumé

FR  |  
EN

La recherche d'une compactification de l'ensemble des métriques Riemanniennes à singularités coniques sur une surface amène naturellement à l'étude des ''surfaces à Courbure Intégrale Bornée au sens d'Alexandrov''. Il s'agit d'une géométrie singulière, développée par A. Alexandrov et l'école de Leningrad dans les années 1970, et dont la caractéristique principale est de posséder une notion naturelle de courbure, qui est une mesure. Cette large classe géométrique contient toutes les surfaces ''raisonnables'' que l'on peut imaginer.Le résultat principal de cette thèse est un théorème de compacité pour des métriques d'Alexandrov sur une surface ; un corollaire immédiat concerne les métriques Riemanniennes à singularités coniques. On décrit dans ce manuscrit trois hypothèses adaptées aux surfaces d'Alexandrov, à la manière du théorème de compacité de Cheeger-Gromov qui concerne les variétés Riemanniennes à courbure bornée, rayon d'injectivité minoré et volume majoré. On introduit notamment la notion de rayon de contractibilité, qui joue le rôle du rayon d'injectivité dans ce cadre singulier.On s'est également attachés à étudier l'espace (de module) des métriques d'Alexandrov sur la sphère, à courbure positive le long d'une courbe fermée. Un sous-ensemble intéressant est constitué des convexes compacts du plan, recollés le long de leurs bords. A la manière de W. Thurston, C. Bavard et E. Ghys, qui ont considéré l'espace de module des polyèdres et polygones (convexes) à angles fixés, on montre que l'identification d'un convexe à sa fonction de support fait naturellement apparaître une géométrie hyperbolique de dimension infinie, dont on étudie les premières propriétés.