Thèse soutenue

Introduction du gauchissement dans les éléments finis multifibres pour la modélisation non linéaire des structures en béton armé

FR  |  
EN
Auteur / Autrice : Sophie Capdevielle
Direction : Frédéric Dufour
Type : Thèse de doctorat
Discipline(s) : Matériaux, Mécanique, Génie civil, Electrochimie
Date : Soutenance le 13/10/2016
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....)
Partenaire(s) de recherche : Laboratoire : Sols, solides, structures - risques (Grenoble) - Sols, solides, structures - risques (Grenoble)
Jury : Président / Présidente : Panagiotis Kotronis
Examinateurs / Examinatrices : Stéphane Grange, Cédric-Arthur Desprez, Frédéric Ragueneau
Rapporteurs / Rapporteuses : Alain Millard, Pierre Léger

Résumé

FR  |  
EN

Les travaux présentés dans cette thèse sont consacrés à l'enrichissement de la méthode de modélisation par éléments finis de type poutre multifibre. La méthode a fait ses preuves pour le calcul dynamique d'éléments de structures élancés, lorsque les contraintes normales prédominent. Toutefois, lorsque les contraintes de cisaillement sont prépondérantes, l'approximation de la cinématique utilisée par les éléments poutre n'est plus assez précise pour obtenir des résultats satisfaisants. L'objet de ces travaux de thèse est d'améliorer la méthode en créant un nouvel élément permettant de tenir compte du gauchissement des sections transversales dû au cisaillement. Ce développement est réalisé en deux étapes. Les éléments sont enrichis dans un premier temps par les déformations de gauchissement sous sollicitation de torsion. Le modèle de gauchissement est validé dans le domaine linéaire par confrontation aux résultats d'une modélisation numérique 3D. Après implémentation du gauchissement de torsion dans l'élément multifibre, des simulations numériques de poutres en torsion pure sont comparées à des résultats d'essais, permettant de valider le comportement des éléments poutre dans les domaines linéaire et non linéaire. Un modèle d'endommagement est utilisé pour le béton, et le gauchissement est mis à jour au fur et à mesure du calcul en tenant compte de l'évolution des propriétés matériau. L'étape suivante d'enrichissement est alors réalisée, avec l'élaboration d'un modèle de gauchissement complet sous toutes sollicitations de cisaillement, couplé au modèle d'endommagement. Une validation locale du profil de gauchissement élastique sous effort tranchant est effectuée par comparaison à la solution analytique, puis le profil de gauchissement sous sollicitations couplées de torsion et d'effort tranchant est validé par confrontation aux résultats d'une modélisation 3D. Outre la prise en compte du cisaillement par effort tranchant, la principale différence de cet enrichissement avec le modèle précédent est le calcul implicite du profil de gauchissement de la poutre au cours du calcul de structure. Les deux modèles développés sont comparés sur le comportement de poutres en torsion monotone, afin de quantifier l'impact de la méthode de calcul sur la précision des résultats et sur l'efficacité du calcul. Finalement, le modèle complet avec gauchissement est appliqué à la simulation sismique d'une structure. L'ensemble de ces cas-tests montre que l'enrichissement de la méthode par éléments finis multifibres est fonctionnel, avec des perspectives d'amélioration en ce qui concerne l'efficacité numérique notamment, et des perspectives intéressantes d'application.