Observation et modélisation de couche limite atmosphérique stable en relief complexe : le processus turbulent d'écoulement catabatique
Auteur / Autrice : | Sébastien Blein |
Direction : | Christophe Brun |
Type : | Thèse de doctorat |
Discipline(s) : | Mécanique des fluides, procédés, énergétique |
Date : | Soutenance le 27/05/2016 |
Etablissement(s) : | Université Grenoble Alpes (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire des écoulements géophysiques et industriels (Grenoble) |
Jury : | Président / Présidente : Chantal Staquet |
Examinateurs / Examinatrices : Jean-Martial Cohard, Branko Grisogono | |
Rapporteurs / Rapporteuses : Mathias Rotach, Valéry Masson |
Mots clés
Résumé
La couche-limite atmosphérique turbulente stable, particulièrement en zone de relief, n'est pas totalement comprise. Elle est, donc, mal représentée par les modèles atmosphériques. En présence de pente et d'un refroidissement du sol, l'augmentation locale de masse volumique génère un écoulement catabatique. En région de montagne, le maximum de vent est généralement enregistré à une hauteur (z_j) de 1-10 m. Le jet de paroi engendre un changement de signe du flux de qdm ainsi qu'une variabilité du flux de chaleur sensible proche du sol. Ces variabilités de flux turbulents contredisent l'applicabilité de la théorie des similitudes de Monin-Obukhov (TSMO), pourtant utilisée de manière universelle dans les modèles atmosphériques. Si la TSMO est discutable pour les cas très stables, c'est en présence de pente qu'elle n'est naturellement plus valide puisqu'elle néglige le couplage entre les équations de vitesse et de température. Il est donc impossible de représenter correctement un écoulement catabatique (z_j O(1m)) par un modèle utilisant la TSMO et avec une résolution verticale de l'ordre de la hauteur du maximum de vent. L'objectif du travail de thèse est d'apporter une contribution dans la compréhension et la modélisation de ces écoulements.Afin de compléter les observations peu nombreuses, une campagne de mesure a été réalisée sur une pente raide (20-40 deg) : la pente ouest du Grand Colon (chaîne de Belledonne, Alpes). Les analyses spectrales témoignent de la sensibilité de l'écoulement local aux perturbations externes, même faibles. Les caractéristiques turbulentes classiques sont observées à haute-fréquence alors que des comportements moins standards sont observés aux fréquences intermédiaires ou basses et expliqués par la présence de perturbations turbulentes d'énergie du même ordre de grandeur que l'injection locale. Les cospectres montrent un comportement propre aux écoulements catabatiques: recouvrement progressif selon z des corrélations croisées <0 et >0. La TSMO est mise en défaut pour l'écoulement observé et une solution alternative est utilisée pour estimer les flux en surface, permettant une bonne description de la vitesse de frottement.Le modèle 1D de surface de ISBA (Météo-France) est modifié pour répondre à la modélisation des écoulements catabatiques. Dans un premier temps, le modèle est validé sur un cas standard: en comparaison avec un modèle de Prandtl adapté. Dans un second temps, les données in-situ sont modélisées, d'abord en fournissant des profils de diffusivités effectives puis en utilisant un modèle modifié de turbulence d'ordre 1.5. Les modélisations 1D représentent correctement les champs moyens de vitesse et température mais montrent cependant des comportements trop diffusifs. Le modèle de longueur de mélange est principalement remis en cause, y compris en utilisant des paramétrisations adaptées.Des simulations LES 3D réalistes (Meso-NH, Météo-France) sont effectuées à haute résolution pour représenter le cas d'étude. Ces modélisations représentent finement les variabilités spatiales de l'écoulement catabatique. Cependant, des biais sont engendrés principalement par l'utilisation de la TSMO en condition aux limites de surface. Malgré la forte résolution spatiale, l'utilisation de la TSMO repousse à seulement z=2 m la perception des termes sources de l'écoulement catabatique par le modèle, alors que la source de l'écoulement atteint son maximum précisément en surface. Les modèles analytiques d'écoulement catabatique (de type Prandtl, qui pourraient aisément être intégrés en conditions aux limites) nécessitent de connaître "a priori" les profils de diffusivité. Ceci implique l'utilisation d'un modèle de turbulence. Le couplage du modèle 1D de surface (précédemment modifié et validé "off-line") est donc proposé pour répondre au manque de description de la physique par les CaL classiques de surface. Le travail préliminaire du couplage est présenté et des solutions sont proposées en perspective.