Thèse soutenue

Impact des infiltrations d'air sur les performances des bâtiments : focus sur l'étude expérimentale dans les parois ossature bois

FR  |  
EN
Auteur / Autrice : Nolwenn Hurel
Direction : Monika WoloszynMickaël Pailha
Type : Thèse de doctorat
Discipline(s) : Génie civil et sciences de l'habitat
Date : Soutenance le 21/11/2016
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale sciences et ingénierie des systèmes, de l'environnement et des organisations (Chambéry ; 2007-2021)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'optimisation de la conception et ingénierie de l'environnement (Le-Bourget-du-Lac, Savoie)
Jury : Président / Présidente : Eric Arquis
Examinateurs / Examinatrices : Max Howard Sherman, Gilles Rusaouen
Rapporteurs / Rapporteuses : Staf Roels, Christian Inard

Résumé

FR  |  
EN

Une mauvaise étanchéité à l’air dans un bâtiment peut entraîner des surconsommations énergétiques et poser un certain nombre de problèmes tels que l’apparition de moisissures dans les murs ou encore une mauvaise qualité de l’air intérieur. Les constructions à ossature bois sont particulièrement sujettes aux infiltrations d’air, d’où la nécessité de mieux comprendre ces phénomènes et leurs conséquences afin que ces bâtiments puissent respecter les normes d’étanchéité de plus en plus strictes. Cette étude contribue par plusieurs aspects et à différentes échelles à l’évaluation de l’impact des infiltrations d’air sur les performances d’un bâtiment.Les infiltrations d’air à travers l’enveloppe peuvent perturber le bon fonctionnement de la ventilation mécanique et augmenter les pertes thermiques. Cette problématique est d’abord traitée numériquement à l’échelle du bâtiment, avec l’étude d’une grande variété de maisons et de conditions météorologiques. Des modèles simplifiés applicables à tout niveau d’étanchéité ont été établis pour la prise en compte des infiltrations naturelles dans les calculs de débit total de ventilation. Une plus petite échelle est ensuite considérée pour l’étude de l’étanchéité à l’air, avec la caractérisation expérimentale de parois ossature bois, de matériaux et de détails de construction, notamment grâce à la construction d’un banc d’essai adapté. Un certain nombre de tests de pressurisation ont permis de quantifier les fuites d’air induites par des défauts d’étanchéité spécifiques et peuvent être utilisés pour les simulations numériques à l’échelle du bâtiment.L’impact des infiltrations d’air sur les performances hygrothermiques d’une paroi est intimement lié à la dispersion de l’air à l’intérieur de celle-ci, mais il y a actuellement un manque d’études et de techniques expérimentales pour la déterminer. Une nouvelle méthode a donc été développée, à savoir l’utilisation de microparticules de fluorescéine comme traceur à l’intérieur des isolants. L’établissement de cartographies de la concentration en fluorescéine a permis d’étudier l’impact de certains paramètres tels que la vitesse d’air, le matériau isolant ou encore la géométrie sur les infiltrations d’air, et a mis en évidence des phénomènes tels que l’apparition de lames d’air entre les composants de la paroi. Par ailleurs un modèle du transport des particules de fluorescéine a été développé et couplé à un modèle CFD pour des analyses plus fines du chemin de l’air.Enfin, une étude de cas a été effectuée sur des parois simplifiées afin de comparer les différentes méthodes expérimentales, de vérifier leur applicabilité à l’étude du chemin de l’air, et d’obtenir des données pour la validation de modèles numériques. La dispersion de l’air en entrée/sortie de l’isolant a été étudiée par thermographie infrarouge et PIV. Le chemin de l’air à l’intérieur de l’isolant a lui été étudié par 3 techniques : des mesures de température avec des thermocouples ; d’humidité relative avec des capteurs capacitifs SHT 75 ; et l’utilisation de microparticules de fluorescéine. Les avantages et inconvénients de chaque méthode ont été identifiés pour aider à sélectionner la plus adaptée pour de futures études.