Thèse soutenue

Modélisation des transferts d’air et leur impact sur le comportement hygrothermique de l'enveloppe des bâtiments

FR  |  
EN
Auteur / Autrice : Clément Belleudy
Direction : Monika WoloszynMarx Chhay
Type : Thèse de doctorat
Discipline(s) : Génie civil et sciences de l'habitat
Date : Soutenance le 23/02/2016
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale sciences et ingénierie des systèmes, de l'environnement et des organisations (Chambéry ; 2007-2021)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'optimisation de la conception et ingénierie de l'environnement (Le-Bourget-du-Lac, Savoie)
Jury : Président / Présidente : Rachid Bennacer
Examinateurs / Examinatrices : Hua Ge, Daniel Quénard, Gilles Rusaouen
Rapporteurs / Rapporteuses : Christian Inard, Staf Roels

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Dans un contexte de durcissement des règlementations thermiques, la maîtrise de l'étanchéité à l'air des bâtiments est essentielle pour atteindre les objectifs de consommation énergétique. Les fuites d'air parasites à travers l'enveloppe, dues aux défauts de conception ou à une mauvaise mise en oeuvre, mènent à une surconsommation énergétique, mais aussi à des pathologies liées à l'humidité, mettant en péril la durabilité du bâti et la santé des occupants. Le risque lié à l'humidité est particulièrement présent dans les cas des enveloppes légères à ossature bois, sensibles aux transferts d'air.Il est donc nécessaire de mieux comprendre et de quantifier l'impact de ces transferts d'air sur le champ hygrothermique et sur le flux de chaleur au niveau d'un défaut d'étanchéité. Dans ce but, deux modèles numériques traitant les transferts couplés 'air-chaleur' et couplés 'air-chaleur-humidité' sont développés. Le second modèle est d'abord validé en 1D à l'aide de benchmarks numériques. Ensuite, des mesures de température dans un isolant en ouate de cellulose traversé par un flux d'air humide sont comparées avec les sorties des modèles. Une bonne concordance mesures-modèles est obtenue. Le modèle 'air-chaleur-humidité' s'avère plus précis pour prédire le champ de température que le modèle 'air-chaleur'.Suite à cette validation 2D du modèle couplé 'air-chaleur-humidité', celui-ci est appliqué à une géométrie de défaut complexe, mettant en jeu des isolants poreux perméables à l'air en contact avec des fines lames d'air. Ce défaut se veut réaliste, puisqu'il est issu de campagnes de mesures nationales qui ont permis d'identifier les points sensibles des enveloppes à ossature bois vis à vis des fuites d'air parasites. Des simulations sont réalisées avec des conditions aux limites variables en température et humidité sur des temps longs (quatre ans), en exfiltration et en infiltration d'air. Ces études permettent de dégager certaines tendances vis-à-vis des risques liés à l'humidité. Ainsi, l'exfiltration provoque une humidification significative de l'assemblage tandis que l'infiltration mène à un séchage. Une méthodologie pour évaluer les flux thermiques à l'échelle du défaut est également proposée.Dans une dernière partie, une approche simplifiée est proposée pour prendre en compte l'impact des défauts d'étanchéité à l'air sur la déperdition thermique à l'échelle bâtiment. La perte thermique supplémentaire générée par un défaut d'étanchéité peut être caractérisée par un coefficient de perte thermique propre au défaut, et le couplage du flux d'air avec l'enveloppe a une influence significative sur l'évaluation du flux déperditif total. Enfin, l'influence des transferts d'humidité sur les tendances observées est discutée.