Thèse soutenue

Capteur de déplacement linéaire pour un mouvement d'axe hélicoïdal

FR  |  
EN
Auteur / Autrice : Zeina Elrawashdeh
Direction : Frédéric LamarquePhilippe Revel
Type : Thèse de doctorat
Discipline(s) : Mécanique Avancée
Date : Soutenance le 12/07/2016
Etablissement(s) : Compiègne
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Compiègne)

Résumé

FR  |  
EN

Le développement des capteurs de déplacement à hautes performances du point de vue de la limite de résolution et de l’étendue de mesure, est devenu une demande croissante pour les systèmes mécaniques et mécatroniques. Ce mémoire présente la modélisation, la conception et la fabrication d’un capteur innovant permettant la mesure in-situ et en temps réel du déplacement linéaire d’un axe en mouvement de rotation. Ce capteur est caractérisé par une grande étendue de mesure d’une dizaine de millimètres et par une résolution micrométrique. Après une étude bibliographique portant sur les applications industrielles de ce capteur, une modélisation géométrique de la réflexion de lumière par une surface convexe a été développée. Ce modèle calcule l’intensité lumineuse détectée par le capteur en fonction du rayon de courbure de la surface. Il a montré que la sensibilité augmente en fonction du rayon de courbure (Rc) et que la résolution est optimale pour (Rc=20 mm). Ce modèle géométrique a été validé par des essais expérimentaux dont les résultats ont montré une chute de la sensibilité pour des rayons inférieurs à (Rc= 15 mm). Pour cette raison, et afin de garantir le meilleur fonctionnement du capteur, le rayon de courbure choisi pour la fabrication du réseau de cônes imbriqués a été de 25 mm. Une fois le rayon de courbure optimal choisi, une modélisation géométrique de la mesure de déplacements linéaires sur une grande étendue de mesure par l’utilisation de deux sondes et d’un réseau à cônes imbriqués a été réalisée. La technique d’usinage de haute précision (UHP) a été présentée. Un premier prototype de ce réseau en alliage d’aluminium a été obtenu. Puis, le modèle géométrique a été optimisé pour mieux prendre en compte certaines contraintes de fabrication, ce qui a conduit à l’usinage d’un deuxième prototype ayant des paramètres géométriques légèrement modifiés et un meilleur état de surface pour mieux réfléchir la lumière. Enfin, la validation expérimentale du principe de mesure du capteur à fibres optiques (CFO) a été faite pour ces deux prototypes du réseau de cônes imbriqués, à l’aide d’un montage mécanique, ce qui a permis d’orienter au mieux les sondes du CFO en face du réseau. Cette validation a permis d’évaluer les performances du CFO. Pour le premier prototype, un recouvrement de 30 µm a été vérifié entre les deux signaux. Différentes vitesses de translation et de rotation on été appliquées ; où on a remarqué l’apparition des pics périodiques. Ces pics sont dus à un problème de balourd de l’axe de rotation de la broche ; en augmentant les valeurs de la vitesse de rotation, les pics s’atténuent, car l’inertie de la broche est supérieure. Pour cette raison, on a privilégié de travailler avec des vitesses de rotation élevées et une gamme de vitesse de translation tout en tenant compte de la fréquence d’acquisition. Pour le deuxième prototype, on a validé le principe de mesure avec deux sondes à fibres optiques. Un recouvrement suffisant a été mesuré entre les deux signaux. On a constaté qu’en acceptant davantage de non-linéarité, on augmente la largeur de la zone de recouvrement, ce qui facilite le basculement d’une sonde à l’autre et ainsi assure la continuité de la mesure sur une étendue millimétrique qui est fonction du nombre de cônes, mais l’exactitude de la mesure s’en trouve diminuée. En augmentant la vitesse de translation, on diminue le nombre des points acquis dans la zone de recouvrement, ce qui exige une fréquence d’acquisition plus élevée.