Devenir de mélanges de pesticides : étude des voies de biodégradation et développement d'une méthode préventive de bioremédiation
Auteur / Autrice : | Louis Carles |
Direction : | Isabelle Batisson, Pascale Besse-Hoggan |
Type : | Thèse de doctorat |
Discipline(s) : | Microbiologie |
Date : | Soutenance le 02/12/2016 |
Etablissement(s) : | Clermont-Ferrand 2 |
Ecole(s) doctorale(s) : | École doctorale des sciences de la vie, santé, agronomie, environnement (Clermont-Ferrand) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Microorganismes : Génome et environnement - Institut de Chimie de Clermont-Ferrand (Aubière, Puy-de-Dôme ; 2012-....) - Microorganismes : Génome et Environnement - Clermont Auvergne / LMGE |
Jury : | Président / Présidente : Stéphane Vuilleumier |
Examinateurs / Examinatrices : Isabelle Batisson, Pascale Besse-Hoggan, Thierry Lebeau | |
Rapporteur / Rapporteuse : Enrique Barriuso, Edward Topp |
Mots clés
Résumé
Les pesticides de nouvelle génération sont le plus souvent épandus à de faibles doses et en mélange. Peu d’études se sont intéressées jusqu’à présent à l’effet de ces mélanges sur la biodégradation et la toxicité de chaque pesticide et/ou métabolite. Le but de ces travaux de thèse était d’étudier les voies de biotransformation de chacun des trois herbicides d’un mélange constitué de mésotrione (β-tricétone), nicosulfuron (sulfonylurée) et S-métolachlore (chloroacétanilide) utilisé sur les cultures de maïs, ainsi que la toxicité (test Microtox ® ) des herbicides et de leurs métabolites, seuls et en mélanges. L’identification des métabolites de la mésotrione chez la souche Bacillus megaterium Mes11 et une étude de protéomique différentielle ont suggéré l’implication de nitroréductases dans la première étape de la biotransformation de cet herbicide, rôle confirmé ensuite par la caractérisation structurelle et fonctionnelle de deux enzymes capables de transformer la mésotrione : les nitroréductases NfrA1 et NfrA2, appartenant à la sous-famille NfsA-FRP des Nitro-FMN réductases. La voie de biotransformation du nicosulfuron a, quant à elle, été étudiée chez la souche Pseudomonas fluorescens SG-1 isolée à partir de sol agricole, capable de transformer cet herbicide par co-métabolisme. Cette biotransformation conduit à la formation de deux métabolites majoritaires issus du clivage de la liaison sulfonylurée du nicosulfuron, l’un deux (l’ADMP, 2-amino-4,6-diméthoxypyrimidine) présentant une toxicité 20 fois supérieure à celle de la molécule mère. Nous avons également étudié qualitativement et quantitativement la biotransformation de la mésotrione et du nicosulfuron par la souche Mes11 séparément ou en mélange, et en présence ou non de S-métolachlore Les résultats ont montré un effet négatif de la mésotrione sur la biotransformation du nicosulfuron et un effet positif du S-métolachlore sur la biotransformation de la mésotrione. Tous les mélanges d’herbicides testés ont montré des effets synergiques pour la toxicité vis-à-vis de A. fischeri, tandis que les mélanges de métabolites (avec ou sans S-métolachlore) étaient majoritairement synergiques ou antagonistes. La dernière partie des travaux de thèse est focalisée sur le développement d’une technique préventive de traitement de la pollution par les pesticides d’origine agricole (bioprophylaxie). Nous avons fait la preuve de concept de cette technique par une étude en microcosmes de sol. L’épandage simultané de l’herbicide 2,4-D (acide 2,4-dichlorophénoxyacétique) et de la souche Cupriavidus necator JMP134 capable de le minéraliser a en effet permis de réduire le temps de demi-vie de ce composé d’un facteur 3, tout en conservant son activité herbicide.