Thèse soutenue

Le théorème de Gauss sur les sommes de 3 carrés, de faisceaux, et composition de Gauss

FR  |  
EN
Auteur / Autrice : Albert Gunawan
Direction : Bas EdixhovenQing Liu
Type : Thèse de doctorat
Discipline(s) : Mathematiques pures
Date : Soutenance le 08/03/2016
Etablissement(s) : Bordeaux en cotutelle avec Universiteit Leiden (Leyde, Pays-Bas)
Ecole(s) doctorale(s) : École doctorale Mathématiques et informatique (Talence, Gironde ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Institut de mathématiques de Bordeaux
Jury : Président / Présidente : Hendrik Lenstra
Rapporteurs / Rapporteuses : Philippe Gille, Don Zagier

Mots clés

FR  |  
EN

Résumé

FR  |  
EN  |  
NL

Le théorème de Gauss sur les sommes de 3 carrés relie le nombre de points entiers primitifs sur la sphère de rayon la racine carrée de n au nombre de classes d'un ordre quadratique imaginaire. En 2011, Edixhoven a esquissée une preuve du théorème de Gauss en utilisant une approche de la géométrie arithmétique. Il a utilisé l'action du groupe orthogonal spécial sur la sphère et a donné une bijection entre l'ensemble des SO3(Z)-orbites de tels points, si non vide, avec l'ensemble des classes d'isomorphisme de torseurs sous le stabilisateur. Ce dernier ensemble est un groupe, isomorphe au groupe des classes d'isomorphisme de modules projectifs de rang 1 sur l'anneau Z[1/2, √- n], ce qui donne une structure d'espace affine sur l'ensemble des SO3(Z)-orbites sur la sphère. Au chapitre 3 de cette thèse, nous donnons une démonstration complète du théorème de Gauss suivant les travaux d'Edixhoven. Nous donnons aussi une nouvelle preuve du théorème de Legendre sur l'existence d'une solution entière primitive de l'équation x2 + y2 + z2 = n en utilisant la théorie des faisceaux. Nous montrons au chapitre 4 comment obtenir explicitement l'action, donnée par la méthode des faisceaux, du groupe des classes sur l'ensemble des SO3(Z)-orbites sur la sphère en termes de SO3(Q).