Thèse soutenue

Au-delà de la volumétrie en morphométrie basée sur les déformations : application au dimorphisme sexuel durant l'adolescence

FR  |  
EN
Auteur / Autrice : Mehdi Hadj-Hamou
Direction : Nicolas AyacheXavier Pennec
Type : Thèse de doctorat
Discipline(s) : Automatique, traitement du signal et des images
Date : Soutenance le 14/12/2016
Etablissement(s) : Université Côte d'Azur (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Nice ; 1992-....)
Partenaire(s) de recherche : établissement de préparation : Université de Nice (1965-2019)
Laboratoire : Institut national de recherche en informatique et en automatique (France). Unité de recherche (Sophia Antipolis, Alpes-Maritimes) - Analysis and Simulation of Biomedical Images
Jury : Président / Présidente : Rachid Deriche
Examinateurs / Examinatrices : Nicolas Ayache, Xavier Pennec, Rachid Deriche, Christian Barillot, Olivier Colliot, Jean-Luc Martinot
Rapporteur / Rapporteuse : Christian Barillot, Olivier Colliot

Résumé

FR  |  
EN

L'analyse des changements morphologiques du cerveau dans des séries temporelles d'images est un sujet important en neuroimagerie. Bien que le développement des bases de données longitudinales ait aidé à réduire la variabilité inter-individu, il reste encore de nombreux biais qui doivent être évités lors de l'estimation des évolutions longitudinales. De plus, lorsque les changements intra-sujet sont très faibles par rapport à la variabilité inter-sujet, il est crucial de savoir si les méthodes existantes peuvent capturer sans biais les changements longitudinaux. Dans la plupart des études, les changements longitudinaux sont limités à leur composante volumétrique scalaire afin d'en faciliter l'analyse. Cependant, les changements cérébraux ne sont généralement pas uniquement volumétriques et dans ce cas multivarié, l'interprétation est alors plus difficile. Cette thèse adresse ces problèmes en suivant trois axes principaux. Premièrement, nous proposons une chaîne de traitement longitudinale reposant sur la morphométrie à partir de déformations et ayant pour but d'estimer de manière robuste les changements longitudinaux. Afin d’éviter de rajouter du biais, nous détaillons tout l'enchaînement des étapes de traitement. En plus de cette contribution, nous intégrons une modification de l'algorithme de recalage non-linéaire qui consiste à masquer le terme de similarité tout en conservant la symétrie de la formulation. Cette contribution augmente la robustesse des résultats vis-à-vis des artefacts d'intensité situés en bordure du cerveau et augmente ainsi la sensibilité de l'étude statistique réalisée sur les déformations longitudinales