Modélisation de grands réseaux de neurones par processus de Hawkes
Auteur / Autrice : | Julien Chevallier |
Direction : | Patricia Reynaud-Bouret, François Delarue |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 09/09/2016 |
Etablissement(s) : | Université Côte d'Azur (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Sciences fondamentales et appliquées (Nice ; 2000-....) |
Partenaire(s) de recherche : | établissement de préparation : Université de Nice (1965-2019) |
Laboratoire : Laboratoire J.-A. Dieudonné (Nice) - Laboratoire Jean Alexandre Dieudonné | |
Jury : | Examinateurs / Examinatrices : Patricia Reynaud-Bouret, François Delarue, Sylvie Méléard, Matthieu Rosenbaum, Olivier Faugeras, Eva Löcherbach, Benoît Perthame |
Rapporteur / Rapporteuse : Sylvie Méléard, Matthieu Rosenbaum |
Résumé
Comment fonctionne le cerveau ? Peut-on créer un cerveau artificiel ? Une étape essentielle en vue d'obtenir une réponse à ces questions est la modélisation mathématique des phénomènes à l'œuvre dans le cerveau. Ce manuscrit se focalise sur l'étude de modèles de réseaux de neurones inspirés de la réalité.Cette thèse se place à la rencontre entre trois grands domaines des mathématiques - l'étude des équations aux dérivées partielles (EDP), les probabilités et la statistique - et s'intéresse à leur application en neurobiologie. Dans un premier temps, nous établissons les liens qui existent entre deux échelles de modélisation neurobiologique. À un niveau microscopique, l'activité électrique de chaque neurone est représentée par un processus ponctuel. À une plus grande échelle, un système d'EDP structuré en âge décrit la dynamique moyenne de ces activités. Il est alors montré que le modèle macroscopique peut se retrouver de deux manières distinctes : en étudiant la dynamique moyenne d'un neurone typique ou bien en étudiant la dynamique d'un réseau de n neurones en champ-moyen quand n tend vers l’infini. Dans le second cas, la convergence vers une dynamique limite est démontrée et les fluctuations de la dynamique microscopique autour de cette limite sont examinées. Dans un second temps, nous construisons une procédure de test d'indépendance entre processus ponctuels, ces derniers étant destinés à modéliser l'activité de certains neurones. Ses performances sont contrôlées théoriquement et vérifiées d'un point de vue pratique par une étude par simulations. Pour finir, notre procédure est appliquée sur de vraies données