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This dissertation thesis deals with propositional satisfiability (SAT), one of the most important prob-
lems in computing science, including artificial intelligence (A.I.) and complexity theory. Two main lines
of research have been mainly investigated over the years in this domain. The first one deals with the
design of efficient SAT solvers, allowing the classes of instances that can be solved in practice to be ex-
tended. The second one is mainly theoretically-oriented: the goal is to characterize new tractable classes
or formulas that can be recognized and solved in polynomial time. In this dissertation thesis, the focus is
on this second important issue, while keeping in mind the potential impact of our results in practice.

Propositional reasoning and search has indeed been a very active topic of research in A.I. the last
three decades. Thanks to impressive improvements in the time-efficiency of satisfiability checking pro-
cedures on many instances (see for example [7]), the propositional satisfiability framework is now widely
recognized as a powerful practical setting for many reasoning and A.I. problem-solving paradigms. SAT,
namely checking whether a set of propositional clauses is satisfiable, has also attracted much attention
for a very long time in theoretical computing science since it is a canonical NP-complete problem [8]; as
such, SAT is thus expected to remain intractable in the worst case unless P=NP.

Despite the considerable research efforts over the years, theoretical results about various tractable
fragments of SAT still hardly play a role in the implementation of the most efficient current SAT solvers.
We believe that the extension of current polynomial fragments of SAT might possibly pave the way
towards the next generation of SAT solvers, provided that the treatment of these extended fragments
could be grafted within the search for satisfiability or included in some pre-processing steps.

In this respect, the focus in this thesis is on the linear time unit propagation (in short, UP) inference
rule, which is recognized as being a fundamental and elementary step of all state-of-the-art satisfiability
solvers. More precisely, we attempt to extend current polynomial fragments of SAT thanks to UP in
such a way that the fragments can still be recognized and solved in polynomial time. In addition to its
fundamental role inside SAT solvers, UP is also an important inference rule for many tractable classes
such as Horn formulas. Indeed, UP is a basic operation in all DPLL-like procedures and modern SAT
solvers. A linear-time algorithm for Horn satisfiability, one of the most popular tractable fragments of
SAT, is also based on this inference rule and exploited in this thesis.

Specifically, our first contribution focuses on the so-called Quad fragments of SAT, which have been
proposed in [6] as “almost" quadratic fragments of SAT. The Quad tractable class makes use of UP to
infer sub-clauses until the formula is reduced into a member of a “root" class that is made of only bi-
nary clauses, or formulas without positive or negative clauses. In this last case, the formula is known
to be satisfiable. Firstly, we establish some properties of Quad fragments. Secondly, we extend these
fragments and exhibit promising variants. More precisely, we start by studying the sensitivity of Quad
fragments to clause elimination and variable assignment. Then, an extension is obtained by allowing
Quad fixed total orderings of clauses to be accompanied with specific additional separate orderings of
maximal sub-clauses, i.e., sub-clauses obtained by removing only one literal. Interestingly, the resulting
fragments extend Quad without degrading its worst-case complexity. Finally, we question other funda-
mental principles that are grounding Quad and that could be relaxed while keeping the polynomial time
complexity. Especially, we investigate how bounded resolution and redundancy through unit propagation
can play a role in this respect.

Our second contribution on tractable sub-classes of SAT is obtained by extending the well-known
Tovey’s polynomial fragment [9] so that it also includes instances that can be simplified using UP. Then,
we compare two existing polynomial fragments based on UP, namely, Quad [6] and UP-Horn [10].
Interestingly, many benchmarks [11] from SAT competitions [7] are shown to belong to UP-Horn. This
result can be interpreted as a step towards the integration of theoretical investigations about tractable
fragments within practical SAT solving. We also answer an open question about the connections between
these two classes: we show that UP-Horn and some other UP-based variants are strict subclasses of⋃

Quad, where
⋃

Quad is the union of all Quad classes obtained by investigating all possible orderings
of clauses.

The dissertation thesis is organized as follows. After this general introduction, the thesis is divided
into three other parts. Part II contains two chapters: the first one is dedicated to propositional logic while
chapter 2 introduces the SAT problem and the main techniques used in SAT solvers. In part III, we
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introduce in chapter 3 the tractable subclasses of SAT and focus on the tractable subclasses that use the
UP technique. Finally in part IV we introduce our contributions. Chapter 4 introduces our extensions
and variants of Dalal’s Quad tractable class and in chapter 5 we present UP-based polynomial fragments
of SAT whereas chapter 6 is dedicated to extensions of Tovey’s polynomial fragment of SAT. In the
conclusive chapter, we present some promising paths for further research.
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Propositional logic and SAT
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Chapter1
Propositional logic

In this chapter, we present the main concepts useful for this thesis that are related to standard proposi-
tional (or, Boolean) logic, which is the branch of mathematical logic introduced in its modern form by G.
Boole [12]. As the goal of this introductory chapter is to recall briefly the fundamentals of propositional
logic, we only present the notations, conventions, definitions and properties required for reading this
thesis, as so many works (see for example [13]) already cover this subject very clearly and exhaustively.

Propositional logic allows the study of assertions that are based on propositional variables, which
are variables that can be assigned to one among two values only: TRUE and FALSE. The proposi-
tional variables are linked together by logical connectives: the negation: ¬ (not . . . ), the conjunction:
∧ (. . . and . . . ), the disjunction: ∨ (. . . or . . . ), the (material) implication: → (i f . . . then . . . ) and the
equivalence connective: ↔ (. . . i f and only i f . . . ) to construct formulas. The truth value of formulas
(TRUE or FALSE) depends on the truth value of their components.

First, we present the syntax and semantic of propositional logic [14]. After that, we describe the clas-
sical simplifications of propositional formulas under conjunctive normal form that preserve satisfiability.

1.1 Syntax

Definition 1. (Atom)
An atom is a propositional variable, which can be assigned a truth value. We will denote the truth values
by {FALS E,TRUE} or {F,T } or {0, 1}, indifferently.

Definition 2. (Formula)
Let α be an alphabet with a finite set of atoms and with the operators:

• The negation: ¬ (not . . . )

• The conjunction: ∧ (. . . and . . . )

• The disjunction: ∨ (. . . or . . . )

• The implication: → (i f . . . then . . . )

• The equivalence: ↔ (. . . i f and only i f . . . )

And the auxiliary parenthesis symbols "(" and ")".
A propositional formula is recursively constructed by applying a finite number of times the following
rules:

1. Atoms p, q, . . . are formulas;

2. If Σ is a formula then (Σ) is a formula;

3. If Σ is a formula then ¬Σ is a formula;

4. If Σ and Σ′ are formulas then:

• Σ ∧ Σ′ is a formula;

• Σ ∨ Σ′ is a formula;

• Σ→ Σ′ is a formula;

11



Chapter 1. Propositional logic

• Σ↔ Σ′ is a formula.

Definition 3. (Literal)
A literal is an atom p or its negation ¬p: p is called a positive literal and ¬p is called a negative
literal. p and ¬p are called complementary and we denote ¬` the literal complementary to the literal `.
Obviously, ¬¬` is equal to `.

Definition 4. (Pure (or Monotone) Literal)
A literal ` is said to be a pure (or a monotone) in a formula Σ if and only if ` appears in Σ and ¬` does
not appear in Σ.

1.2 Semantics

1.2.1 Interpretation of a Formula

Definition 5. (Interpretation)
Let Σ be a propositional formula and Vars(Σ) the set of propositional variables occurring in Σ. An in-
terpretation (or a truth assignment) of Σ is a function from the set of propositional variables Vars(Σ) to
the set of truth values {F,T }.
The interpretation I(Σ) of a formula Σ can then be defined by the truth values of the propositional vari-
ables of Σ.
I(Σ) is calculated according to the following rules:

1. I(>) = T;

2. I(⊥) = F;

3. I(¬Σ) = T if and only if I(Σ) = F;

4. I(Σ ∧ Σ′) = T if and only if I(Σ) = I(Σ′) = T;

5. I(Σ ∨ Σ′) = F if and only if I(Σ) = I(Σ′) = F;

6. I(Σ→ Σ′) = F if and only if I(Σ) = T and I(Σ′) = F;

7. I(Σ↔ Σ′) = T if and only if I(Σ) = I(Σ′).

Notation 1. Let Σ be a formula and I be an interpretation of Σ. I is called a model of Σ, written I |= Σ,
if and only if I(Σ) = T. The set of models of Σ is denoted byM(Σ).

Remark 1. 1. By using the values 0 and 1 for F and T respectively, we get:

• I(¬Σ) = 1 − I(Σ);

• I(Σ ∧ Σ′) = min{I(Σ), I(Σ′)};

• I(Σ ∨ Σ′) = max{I(Σ), I(Σ′)}.

2. • (Σ→ Σ′) ≡ (¬Σ ∨ Σ′);

• (Σ↔ Σ′) ≡ ((Σ→ Σ′) ∧ (Σ′ → Σ)) ≡ ((¬Σ ∨ Σ′) ∧ (¬Σ′ ∨ Σ)).

• The exclusive or (for the difference) of two formulas, denoted (Σ⊕Σ′), is the formula: ¬(Σ↔
Σ′).
And if we restrict ourselves to the use of the operators {¬,∧,∨}, then it is the formula ((¬Σ∧

Σ′) ∨ (¬Σ′ ∧ Σ)).

3. We denote by MI(Σ) the set of interpretations of a formula Σ. If Σ has exactly n different atoms then
|MI(Σ)| = 2n.

12



1.2. Semantics

Remark 2. In propositional calculus, in order to describe an interpretation it is sufficient to know the
truth value given to all the propositional variables occurring in the formula. So, it is natural to character-
ize an interpretation I by the set of atoms assigned to T . For example, for the formula (a∨ b)→ (c→ d)
and the interpretation I(a) = T, I(b) = T, I(c) = F, I(d) = F, I is denoted by {a, b}. However, for
incomplete interpretations (see definition 6) this representation cannot distinguish between the atoms
that take the truth value FALSE and the unassigned atoms. So we adopt the convention of representing
an interpretation by its true literals. Hence, the interpretation I above will be represented by the set
{a, b,¬c,¬d}.

Definition 6. (Complete and Incomplete Interpretation)
Let Σ be a formula with n distinct atoms.

1. An interpretation I (represented as a set of literals) is complete if and only if it has non comple-
mentary n distinct literals.

2. An interpretation I′ is incomplete if and only if there is a complete interpretation I such that I′ ⊂ I.

Remark 3. Let Σ be a formula with n distinct atoms then

• If I is a complete interpretation then |I| = n.

• If I is an incomplete interpretation then |I| < n.

1.2.2 Consistency and Inconsistency of a Formula

Definition 7. (Satisfied formula)
A formula Σ is satisfied by an interpretation I if and only if I(Σ) = T.

Definition 8. (Falsified formula)
A formula Σ is falsified by an interpretation I if and only if I(Σ) = F.

The concepts of consistency and inconsistency of a formula are defined as follows:

Definition 9. (Consistency/Inconsistency)

• A formula Σ is called consistent (or satisfiable) if and only if Σ admits a model.

• A formula Σ is called inconsistent (or unsatisfiable) if and only if Σ admits no model, that is
M(Σ) = ∅.

Notes 1. (Tautological Formula)
A formula is tautological if and only ifM(Σ) = MI(Σ).

1.2.3 Logical Consequence

Definition 10. (Logical Consequence)
A formula Σ semantically implies the formula Σ′, denoted Σ � Σ′, if and only ifM(Σ) ⊆ M(Σ′). In this
case we say that Σ′ is a logical consequence of Σ.

Definition 11. (Implied Literal)
A literal l is implied by a formula Σ, denoted Σ � l, if and only if l appears in every model of Σ.

Definition 12. (Logical Equivalence)
Two formulas Σ and Σ′ are logically equivalent, denoted Σ ≡ Σ′, if and only if Σ � Σ′ and Σ′ � Σ, i.e.,
M(Σ) =M(Σ′).

Example 1. A trivial example of semantics equivalence of two formulas: (Σ→ Σ′) ≡ (¬Σ ∨ Σ′).

The following property can be proved by a contradiction.

Property 1. Let Σ and Σ′ be two formulas: Σ � Σ′ if and only if Σ ∧ ¬Σ′ is inconsistent.
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Chapter 1. Propositional logic

1.2.4 Clauses, Cubes and Normal Forms

Clauses and Cubes

Definition 13. (Clause)
A clause is a finite disjunction of literals.

Definition 14. (Cube)
A cube is a finite conjunction of literals.

Remark 4. We denote a clause either by a finite set of literals {l1, l2, . . . , ln} or by its disjunction (l1 ∨
l2, · · · ∨ ln).

Definition 15. (Fundamental Clause and Cube)
A clause (resp. cube) is fundamental if it is a clause (resp. cube) which does not contain complementary
literals.

In general, we say that a set of literals is fundamental if it is a set which does not contain comple-
mentary literals. In particular an interpretation is a fundamental set of literals.

Remark 5. A clause which is not fundamental is a tautology, so the fundamental clause can be falsified.
A cube which is not fundamental is inconsistent, so the fundamental cube can be satisfied.

Definition 16. (Positive, Negative and Mixed Clause)
A clause is a positive clause if and only if all of its literals are positive and a clause is a negative clause
if and only if all of its literals are negative.
A clause that contains positive and negative literals is called mixed.

Definition 17. (Size of a Clause/Cube)
The size of a clause C (resp. cube M) is the number of different literals in it, we denote this length by
|C|(|M|).

Definition 18. (Unit Clause )
A unit clause C is a clause of size one (|C| = 1). A unit (or mono-) literal is a literal appearing in a unit
clause.

Definition 19. (Binary Clause )
A binary clause C is a clause of size less than or equal to 2 (|C| ≤ 2).

Definition 20. (Empty Clause )
An empty clause C is a clause of size equal to zero (|C| = 0). We will denote the empty clause by ⊥

Remark 6. The empty clause is inconsistent (unsatisfiable).

Definition 21. (Empty Cube )
An empty cube M is a cube of size equal to zero (|M| = 0). We will denote the empty cube by > or {}.

Notes 2. The empty cube is always satisfiable.

Definition 22. (Horn and Reverse-Horn Clause )
A clause is Horn if and only if it contains at most one positive literal.
A clause is reverse-Horn if and only if it contains at most one negative literal.

Definition 23. (Subsumption)
A clause C1 is subsumed by the clause C2 if and only if C2 ⊆ C1 (or C2 is a sub-clause of C1). In this
case we say that C2 subsumes C1 or C1 is subsumed by C2.

Definition 24. (Maximal Sub-Clause)
A sub-clause C′ of C is called maximal if and only if |C| − |C′| = 1.
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Definition 25. (Resolvable (clash) Clauses)
Clauses C1 and C2 are resolvable (clash) if and only if there is exactly one literal l, such that l ∈ C1 and
¬l ∈ C2.

Definition 26. (Resolvent of two Clauses.)
C1 and C2 are resolvable where l ∈ C1 and ¬l ∈ C2 if and only if the resolvent of C1 and C2 on l is
C1 ∪C2 \ {l,¬l} = (C1 \ {l}) ∪ (C2 \ {¬l}) and is denoted by η[l,C1,C2].

Normal Forms

Definition 27. (CNF)
A formula Σ is in conjunctive normal form (CNF) if and only if Σ is a conjunction of clauses, that is a
conjunction of disjunctions of literals.

Definition 28. (DNF)
A formula Σ is in disjunctive normal form (DNF) if and only if Σ is a disjunction of cubes, that is a
disjunction of conjunctions of literals.

The classical transformation of a propositional formula into CNF is exponential with respect to the
length of the given formula but we can construct a CNF formula from any formula in linear time with
respect to the length of the given formula by introducing new variables (see for example [15, 16]).

Notes 3. A conjunctive (resp. disjunctive) normal form is represented by a set of clauses (resp. cubes).

Definition 29. (Irredundant or Minimal CNF)
Let Σ be a CNF formula, Σ is irredundant (or minimal) if and only if for all clauses C in Σ: (Σ \ {C}) 2 C.

Definition 30. (Simplified CNF)
Let Σ be a CNF and l is a literal. Σ|l results from Σ by removing the clauses that contain l and deleting ¬l
from the clauses that contain it. That is Σ|l is the formula obtained from Σ by assigning l the truth-value
TRUE. Formally Σ|l = {C \ {¬l} | C ∈ Σ and l < C}.

Example 2. If Σ = {{x1, x2}, {x1,¬x2}, {¬x1, x3}, {x3, x4}} then Σ|x1 = {{x3}, {x3, x4}}.

More generally, if C is a fundamental set of literals, Σ|C denotes the CNF formula obtained from Σ

by removing the clauses that contain l and deleting ¬l from the clauses for all literals l ∈ C.

Definition 31. (The Clauses set, the Variables set and the Literals set of a CNF)
Let Σ be a CNF. We denote the set {C : C ∈ Σ} by C(Σ), the set of variables of Σ by V(Σ) and the set
of literals of Σ by L(Σ) or L if Σ is known from the context. If l ∈ L(Σ), we denote the variable in V(Σ)
associated with l by V(l) and a literal in L(Σ) associated with the variable v ∈ V(Σ) by L(v).
Note that
L(v) = v or L(v) = ¬v.
V(L(v)) = v.
L(V(l)) = l or L(V(l)) = ¬l.

If l ∈ L(Σ) then we call l positive if l ∈ V(Σ) and negative if ¬l ∈ V(Σ).
If l ∈ L(Σ) then OccΣ(l) (or Occ(l) if there is no confusion) is the set {C ∈ Σ|l ∈ C} and if v ∈ V(Σ),

OccΣ(v)=OccΣ(v) ∪ OccΣ(¬v), where v in the right side denotes the positive literal associated with the
variable v in the left side.

1.3 The Classical Simplifications of a CNF Formula

In this section we present the classical simplifications of propositional formulas in conjunctive normal
form that preserve satisfiability. They could serve as preprocessing approaches for SAT solvers (see
section 2.9 for more complex preprocessing approaches).
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1.3.1 Pure Literal Elimination

In a CNF Σ, we can assign the value TRUE to all pure literals in Σ and hence remove the clauses that
contain them; this step may give rise to new pure literals. The technique of recursively applying this
process until the CNF has no pure literals anymore is called pure literal elimination. The resulting CNF
is implied by Σ.

1.3.2 Unit propagation (UP)

A literal in a unit clause is forced to be TRUE. So we can assign the value TRUE to all unit clauses in
Σ and hence remove the clauses that contain them and remove the negation of them (which is forced
to be FALSE) from the clauses that contain these negations; this step may result in new unit clauses.
The technique of recursively applying this step until the CNF has no unit clauses anymore is called unit
propagation. The resulting CNF is implied by the initial CNF.

Notation 2. 1. Σ∗ denotes the CNF obtained from Σ by unit propagation and Σ� denotes the CNF
obtained from Σ by pure literal elimination, while Σ+ denotes the CNF that results from Σ by unit
propagation and pure literal elimination.

2. Let Σ be a CNF and Σ′ result from Σ by UP, we denote that by Σ �∗ Σ′.

3. Without explicitly referring to the CNF under consideration, processing unit propagation on a
literal a is denoted by UP(a), and the notation UP(a) � l is used to denote that UP(a) implies that
the literal l becomes TRUE.

Notes 4. Σ �∗ Σ′ if and only if Σ ∧ ¬Σ′ �∗ ⊥.

1.3.3 Adding resolvents

Notes 5. 1. If two clauses C1 and C2 are satisfied by a truth assignment then their resolvent is also
satisfied by this truth assignment.

2. If C1 and C2 are clauses such that there exists at least two literal u1 and u2 such that u1 ∈ C1,u2 ∈

C1 and ¬u1 ∈ C2, ¬u2 ∈ C2 then η[u1,C1,C2] = η[u2,C1,C2] = {}.

3. Adding the resolvents preserves the satisfiability of the CNF.

4. If two clauses of length at most two are resolvable then their resolvent is also of length at most
two.

5. An empty clause is obtained as a resolvent in a CNF Σ if and only if Σ is unsatisfiable.

6. Adding resolvents for every pair of literals l and ¬l may increase the cardinality of the resulting
CNF exponentially by adding a lot of clauses.

1.3.4 Subsuming clauses

Definition 32. (Subsumption).
Let C1 and C2 be two clauses within a CNF Σ such that C2 ⊆ C1. The process of removing C1 from Σ is
called subsumption and C2 is said to subsume C1.

Note that if clauses C1 and C2 satisfy C2 ⊆ C1 then any truth assignment that satisfies C2 satisfies
C1, too.

Remark 7. We can combine adding resolvents as well as subsumption to simplify the given CNF in-
stance.

Example 3. Let C1 = {l1, l2, l3, l4} and C2 = {¬l1, l2, l4} be two clauses in a CNF, C1 and C2 cannot
subsume each other, but by adding the resolvent η[l1,C1,C2] = {l2, l3, l4}, the clause C1 = {l1, l2, l3, l4}
can be subsumed by the resolvent clause η[l1,C1,C2] = {l2, l3, l4}.
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1.3.5 Binary Equivalent Literals Propagation

The binary equivalent literal propagation technique is applied for CNF formulas that contain two clauses
of the form C1 = {¬l1, l2} and C2 = {l1,¬l2}.

Definition 33. (Equivalent literals).
Let Σ be a CNF that contains the clauses C1 = {¬l1, l2} and C2 = {l1,¬l2}, the literals l1 and l2 are called
equivalent.

Note that the equivalent literals are either both TRUE or both FALSE.

Remark 8. 1. The binary equivalent literal propagation consisting in replacing all occurrences of
l1 and ¬l1 by l2 and ¬l2 respectively, and then in simplifying the given CNF according to this
replacement (see section 2.9.1 for more details).

2. Let Σ be a CNF and C1 = {¬l1, l2}, C2 = {l1,¬l2}, C3 = {¬l1, l3}, C4 = {l2,¬l3} ∈ Σ, the first re-
placement changes {¬l1, l3} to {¬l2, l3}. So l2,l3 will be equivalent literals. Hence binary equivalent
literal propagation can be used to simplify the given CNF(see section 2.9.1 for more details).

Remark 9. We can use pure literal elimination, unit propagation, adding resolvents, subsuming clauses
and binary equivalent literal propagation as preprocessing techniques.
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Chapter2
SAT Problem

This chapter presents the SAT problem and overviews some of the recent SAT solving techniques. We
begin by giving a short introduction to worst-case complexity theory for understanding the characteri-
zation of the SAT problem, then we give the definition of SAT and provide the main techniques used
to solve SAT instances, such as resolution, refutation, DPLL algorithm, CDCL, branching rules and
preprocessing approaches.

2.1 Complexity Classes

We present in this section some definitions and notations from complexity theory to introduce the SAT
problem. For more details see [17, 18, 19, 20, 21, 22].

Definition 34. (Turing Machine) [19, 22]
A (one-tape deterministic) Turing machine (TM) is a 5-tuple T = (Q,Σ,Γ, q0, δ), where Q is a finite set
of states. Σ (the input alphabet) and Γ (the tape alphabet) are both finite sets, with Σ ⊆ Γ. q0 ∈ Q is the
initial state.
There are two states ha < Q and hr < Q (called halting states), and a blank symbol ∆ < Γ.
δ is the transition function:
δ : Q× (Γ∪ {∆})→ (Q∪ {ha, hr})× (Γ∪ {∆})× {R, L, S } where L, R and S denote the left shift, right shift
and no shift, respectively.

Definition 35. (Nondeterministic Turing Machine)[19]
A nondeterministic Turing machine is a Turing machine with a transition function of the form
δ : Q × (Γ ∪ {∆})→ P((Q ∪ {ha, hr}) × (Γ ∪ {∆}) × {R, L, S })
i.e., the transition function may take instead of one element of Q × (Γ ∪ {∆}) a subset of this set (this set
may be ∅, i.e., there exists a state q and a symbol a such that δ(q, a) = ∅).

Notation 3. Let |x| denote the length of an input x and N denote the set of natural numbers.

Definition 36. (The Time Complexity of a Deterministic Turing Machine)[19]
Let M be a deterministic Turing machine with input alphabet Σ that halts on every input. The time
complexity of M is the function τM : N → N such that if x ∈ Σ∗ is an input, |x| = n then τM(n) is the
maximum number of moves of M on x before halting.

Definition 37. (The Time Complexity of a Nondeterministic Turing Machine)[19, 22]
Let M be a nondeterministic Turing machine with input alphabet Σ that halts for every possible sequence
of moves on every input. The time complexity of M is the function τM : N → N such that if x ∈ Σ∗ is an
input, |x| = n then τM(n) is the maximum number of moves of M on x before halting, in other words if we
let τx be the length of the longest sequence of moves on x then τM(n) = max{τx : |x| = n}.

Definition 38. (Big-O Notation) [17]
Let N and R+ be the natural and positive real numbers respectively, let f and g be two functions such that
f , g : N → R+. f (n) ∈ O(g(n)) if there exists positive integers c0 and n0 such that ∀n ≥ n0, f (n) ≤ c0g(n).

Definition 39. (The Complexity Class P) [19]
The class P is the set of languages L such that there is a deterministic Turing machine M that decides L
in time τM(n) = O(nk) for some positive integer k.

19



Chapter 2. SAT Problem

Definition 40. (The Complexity Class NP)[19]
The class NP is the set of languages L such that there is a nondeterministic Turing machine M that
decides L in time τM(n) = O(nk) for some positive integer k.

Definition 41. (Polynomial-Time Reductions)[19]
Let L1 and L2 be two languages over alphabets Σ1 and Σ2 respectively. A polynomial-time reduction
from L1 to L2 is a function f : Σ∗1 → Σ∗2 such that

1. ∀x ∈ Σ∗1, x ∈ L1 if and only if f (x) ∈ L2

2. There is a Turing machine that computes f in a polynomial time.
If there is a polynomial-time reduction from L1 to L2, we denote that by L1 6p L2.

Definition 42. (NP-Hard Languages)[19]
A language L′ is NP-hard if and only if L 6p L′,∀L ∈ NP.

Definition 43. (NP-Complete Languages)[19]
L is NP-complete if and only if L ∈ NP and L is NP-hard.

Definition 44. (SPACE)
A problem is in the complexity class S PACE( f (n)) if and only if there exists a Turing machine that solves
this problem in O( f (n)) space.

Property 2. It is easy to check that P ⊆ NP.

Definition 45. (CoNP)
The complexity class CoNP is the set of problems which is the complementary of problems in the class
NP that is A ∈ CoNP if and only if A ∈ NP where A = {x : x < A}.

Property 3. We have also P ⊆ CoNP.

Corollary 1. So, P ⊆ (NP ∩CoNP), see figure 2.1.

The following two conjectures follow from theoretical and practical accumulated experimental
knowledge.

Conjecture 1. P , NP, see figure 2.1.

Conjecture 2. NP , CoNP, see figure 2.1.

CoNPC
NPC

CoNP NP

P

Figure 2.1: The relationship between P, NP, CoNP, NP-complete, CoNP-complete under conjecture 1
and conjecture 2
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2.2 SAT: Definition

SAT is the abbreviation for SATisfiability problem of propositional formulas in conjunctive normal
form. It is perhaps one of the most studied NP-complete problems and has been addressed from both
theoretical and practical perspectives. Actually, it is the canonical NP-complete problems [8]. The
satisfiability problem is a very important one and exhibits many applications in a lot of fields of computer
science, like artificial intelligence, formal verification, hardware design, circuit design, model checking,
automated planning and scheduling and automatic theorem proving. SAT was the first problem that was
proved to be NP-complete. This means that there is no efficient algorithm for solving SAT unless P=NP.
Most experts believe that there is no such efficient algorithm but there is no proof for this belief. In spite
of this pessimistic conjecture, modern efficient SAT solvers allow us to solve SAT application instances
involving millions of variables and clauses.

The definitions for SAT and kSAT (which is a special case of SAT where every clause has a length
that equals to k) are as follows.

Definition 46. (SAT)
Instance: S is a finite set of propositional symbols and Σ is a finite set of clauses constructed from S .
Question: Does it exist an interpretation on S that satisfies the set of clauses of Σ?

Definition 47. (kSAT)
Instance: S is a finite set of propositional symbols and Σ is a finite set of clauses, where each clause has
exactly k literals, constructed from S .
Question: Does it exist an interpretation on S that satisfies the set of clauses of Σ?

Notes 6. SAT and kSAT are NP-complete problems [8].

Below, we review the techniques and algorithms used for solving SAT instances.

2.3 Resolution refutation

The operation of obtaining the resolvent from two clauses in a given CNF is called the application of
the resolution rule. There is an algorithm for solving SAT instances based on the resolution rule: this
algorithm is called resolution refutation [23]. It consists in adding non tautological resolvents of each
pair of resolvable clauses until we get the empty clause. In this last case the given CNF is unsatisfiable.
Consequently, resolution is complete for refutation. In addition, if we consider also the subsumption rule,
the CNF formula is answered satisfiable when no new resolvent can be derived. In the next section we
present the well-known DP procedure based on the application of resolution rule to eliminate variables
(see the next section 2.4). Both the time and space complexities of the resolution refutation algorithm
are exponential with respect to the length of the CNF given as input.

2.4 The DP algorithm

The DP algorithm 1 introduced in [24] is based essentially on the following property.

Theorem 1. [24]
Let Σ be a CNF and l be a literal in Σ, rewrite Σ as following (Σ1 ∨ l) ∧ (Σ2 ∨ ¬l) ∧ Σ3 where l does not
appear (positively or negatively ) in the CNFs Σ1,Σ2,Σ3 then
Σ = (Σ1 ∨ l) ∧ (Σ2 ∨ ¬l) ∧ Σ3 is satisfiable if and only if (Σ1 ∨ Σ2) ∧ Σ3 is satisfiable.

This property leads to the following procedure: Assume that Γ is a CNF that results from Σ as follows:
∀C,D ∈ Σ such that C,D are resolvable clauses with the literal l, add all resolvents η[l,C,D] to Σ and
remove all such resolvable clauses.
Γ is satisfiable if and only if Σ is satisfiable.
We can implement DP by using the so-called bucket elimination procedure [25].
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Procedure 1. (Bucket Elimination Procedure) [25].

1. Order the variables using a fixed total order Π.

2. For each variable v in the CNF, construct a bucket and label it with v.

3. Sort the buckets from top to bottom according to their labels using the order Π.

4. Add the clause in the CNF that contains the variable v to the first bucket v from the top.

Algorithm 1: DP algorithm DP(Σ)[25]

1 Input: A CNF formula Σ, a variable ordering Π;
2 Ouput: The CNF formula Σ is S AT or UNS AT ;
3 for each variable v of Σ do
4 create empty bucket Bv;

5 for each clause C of Σ do
6 v← first variable of C according to order Π;
7 Bv ← Bv ∪ {C};

8 for each variable v in Σ according to the order Π do
9 if Bv is not empty then

10 for each v-resolvent C of clauses in Bv do
11 if C is the empty clause then
12 return UNS AT ;

13 u← first variable of C according to order Π;
14 Bu ← Bu ∪ {C};

15 return S AT ;

Remark 10. In the DP procedure, the ordering Π can be set dynamically. The efficiency of such proce-
dure heavily depends on such static or dynamic ordering.

2.5 The DPLL algorithm

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm was introduced by Martin Davis, Hilary Put-
nam, George Logemann and Donald W. Loveland in [26]. This procedure can be seen as a variant of the
Davis-Putnam’s one [24]. The DPLL algorithm is at the basis of most modern SAT solvers such as Chaff

[27], GRASP [28], Satz [29], Minisat [30, 31, 32, 33]. The DPLL algorithm is a complete backtracking
search algorithm that decides SAT instances. It starts by choosing a literal, assigns a truth value to it,
simplifies the CNF by

1. removing the clauses that become TRUE under the assignment of the chosen literal.

2. removing the literals that become FALSE from the remaining clauses

Then this algorithm checks if the simplified formula is satisfiable:

1. if all the clauses are satisfied then the input CNF is also satisfiable.

2. otherwise, it chooses the other (opposite) truth value of the literal under consideration and applies
the procedure recursively.

DPLL algorithm is introduced in algorithm 2. The cornerstone of DPLL algorithm is the heuristic of
branching rules. Naturally, the DPLL procedure includes the well-known unit propagation rule (lines
3-7). Pure literals can also be propagated at each step. DPLL was a very popular complete method for
SAT in the last century. Now the most efficient complete method for SAT is based on CDCL (Conflict
Driven Clause Learning), see section 2.6.
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Algorithm 2: DPLL Algorithm DPLL(Σ)

1 Input: A CNF formula Σ;
2 Ouput: The CNF formula Σ is S AT or UNS AT ;
3 while Σ includes a clause C such that |C| ≤ 1 do
4 if C = ∅ then
5 return UNS AT ;

6 if C = {x} then
7 Σ← Σ|x ;

8 if Σ = ∅ then
9 return S AT ;

10 Choose a literal u depending on the condition of the given branching rule ;
11 if DPLL(Σ|u) = S AT then
12 return S AT ;

13 if DPLL(Σ|u) = S AT then
14 return S AT ;

15 return UNS AT ;

2.6 Conflict Driven Clause Learning (CDCL)

By combining the DPLL and resolution refutation algorithms, we obtain a special case of DPLL
algorithm, called Conflict Driven Clause Learning (CDCL). In this section we present CDCL; most
definitions, notions and notations are taken from [34]. If a clause with all its literals are FALSE (a
conflicting clause) is obtained by DPLL then new clauses (learned clauses [conflict clauses]) are added
to the given CNF.

Definition 48. (Decision Levels of Truth Assignments)

1. (level 0) The truth assignments made before the first decision are set to level 0;

2. (level n) By induction, the truth assignments (decision/unit propagation) performed at the nth
recursive call to DPLL are set to level n.

Definition 49. (Antecedent [or Reason Clause] of a Truth Assignment)
The clause that became a unit clause and leads to unit propagation of the remaining unit literal is called
the antecedent clause of this literal.

Notes 7. A decision literal has no antecedent clause.

Definition 50. (Partial Ordered Interpretation) [34]
At level i, the current partial assignment ρ is represented as a sequence of decision-propagation of the
form 〈(xi

k), xi
k1
, xi

k2
, . . . , xi

knk
〉, where the first literal xi

k corresponds to the decision literal xk assigned at

level k and each xi
k j

for 1 ≤ j ≤ nk represents propagated (unit) literals at level k, is called partial
ordered interpretation.

Notation 4. 1. Let ρ be an interpretation and x ∈ ρ. l(x) denote the assignment level of x.

2. Assume that the literal y is propagated,
−−→
imp(y) denotes the clause of the form (x1 ∨ · · · ∨ xn ∨ y)

such that every literal xi is FALSE under the current partial interpretation and ρ(y) = TRUE

3. we use the notation
−−→
imp(y) =⊥ if the literal y is not obtained from propagation but from a decision

(note that in this case
−−→
imp(y) is undefined).
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4. d(ρ, i) = x if x is the decision literal assigned at level i.

Definition 51. (Explanations)[34]
Let
−−→
imp(y) ,⊥, the explanations is the set {x | x ∈

−−→
imp(y) \ {y}} denoted by exp(y).

Definition 52. (Implication Graph) [34]
Let Σ be a CNF formula, ρ a partial ordered interpretation, and let exp denote the set of explanations for
the unit propagated literals in ρ. The implication graph associated to Σ, ρ and exp is G(ρ,exp)

Σ
= (N ,E)

where:

• N = ρ, i.e., there is exactly one node for every literal, decision or implied;

• E = {(x, y) | x ∈ ρ, y ∈ ρ, x ∈ exp(y)}

The graph G(ρ,exp)
Σ

will denote by Gρ
Σ
.

Definition 53. (Conflict Graph)
A conflict graph is an implication graph that contains a conflit (a unit literal and its negation).

Definition 54. (Conflict Side)
A subgraph of a conflict graph that contains conflicting assignments is called a conflict side.

Definition 55. (Reason Side)
A subgraph of a conflict graph that contains decision assignments is called a reason side.

Definition 56. (Cut)
A partition of the conflict graph into a conflict side and a reason side is called a cut.

Definition 57. (Vertex of cut)
A vertex in a reason side that has at least one edge in conflict side is called a vertex of cut.

Notes 8. (Construction of a Learned Clause (a Conflict Clause)).
The learned clause consists of the negations of the vertices of a cut.

Notes 9. 1. Different cuts leads to different learned clauses.

2. We can add the learned clauses to the given CNF and preserve the satisfiability and the number of
the models of the given CNF.
Adding the learned clauses is very helpful technique in the modern SAT solvers.

A learned clause that has only one literal from the current decision level is called asserting clause.

Definition 58. (Asserting Clause) [34]
A conflict clause c of the form (α∨ x) is called an asserting clause if and only if ρ(c) = FALS E, l(x) = m
and ∀y ∈ α, l(y) < l(x). x is called asserting literal.

Definition 59. (Asserting Clause Derivation)[34]
An asserting clause derivation π(σk) is a sequence of clauses 〈σ1, σ2, . . . σk〉 satisfying the following

conditions :

1. σ1 = η[x,
−−→
imp(x),

−−→
imp(¬x)], where {x,¬x} is the conflict.

2. σi, for i ∈ 2..k, is built by selecting a literal y ∈ σi−1 for which
−−→
imp(y) is defined. We then have

y ∈ σi−1 and y ∈
−−→
imp(y): the two clauses resolve. The clause σi is defined as η[y, σi−1,

−−→
imp(y)];

3. σk is an asserting clause.

Definition 60. (Elementary asserting clause derivation)
An asserting clause derivation π(σk) = 〈σ1, σ2, . . . σk〉 is called elementary if and only if ∃i < k s.t.
π(σi) ⊂ π(σk) is also an asserting clause derivation.
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A unique implication point (UIP) is a vertex in a conflict graph such that the directed paths from the
decision vertex to conflict vertices pass through this vertex.

Definition 61. (Unique Implication Point [UIP]) [34]
A node x ∈ N is a UIP if and only if there exists an asserting clause derivation 〈σ1, σ2, . . . , σk〉 s.t.
x ∈ σk and l(x) is equal to the current decision level, m. (Note that σk, being assertive, has exactly one
such x.)

Notes 10. 1. We can use UIP to construct a cut.

2. There are different methods to get a cut from UIP, for example

• A cut is constructed at the closest UIP to the conflict (the so-called the first UIP).

• A cut is constructed such that the learned clause is asserting and its length is minimal.

Definition 62. (First Unique Implication Point) [34]
A node x ∈ N is a First UIP if and only if it is obtained from an elementary asserting clause derivation;
i.e. ∃π(σk) = 〈σ1, σ2, . . . , σk〉 an elementary asserting clause derivation s.t. x ∈ σk and l(x) = m.

Definition 63. (Last Unique Implication Point) [34]
The last UIP is defined as the literal d(ρ,m), i.e., the decision literal assigned at the conflict level m.

Example 4. Let Σ be a CNF and ρ be the partial assignment ρ =

{〈¬x1
1 . . . 〉〈(x2

2) . . . x2
3 . . . 〉〈(x3

4) . . . 〉 . . . 〈(x5
5) . . . 〉} where the current decision level is 5. Let C1, . . . ,C10

be clauses in Σ where

(C1) ¬x2 ∨ ¬x5 ∨ x6 (C2) ¬x5 ∨ x7

(C3) ¬x6 ∨ ¬x7 ∨ x8 (C4) ¬x3 ∨ ¬x8 ∨ x9

(C5) ¬x1 ∨ ¬x8 ∨ x10 (C6) ¬x4 ∨ ¬x9 ∨ x11

(C7) ¬x4 ∨ ¬x9 ∨ ¬x10 ∨ x12 (C8) ¬x10 ∨ x13

(C9) ¬x11 ∨ ¬x12 ∨ x14 (C10) ¬x13 ∨ ¬x14

The graph Gρ
Σ

in figure 2.2 is an implication graph.

(¬x1
1 ∨ ¬x2

3 ∨ ¬x3
4 ∨ ¬x5

8) is a first asserting clause, because all its literals are assigned before the
current level except (x5

8) which is assigned a the current level 5.

x5
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2.7 Modern SAT solvers

In this section we introduce the components of modern SAT solvers (see books [35, 25] for more details).
We review briefly the following components, see [34] for more details .

• Restart policies

• Lazy Data Structures - Watched Literals

For other components as branching rules and preprocessing approaches, see section 2.8 and section 2.9
respectively.

2.7.1 Restart strategies

Gomes et al. in [36] have shown that different variable orderings may lead to a dramatic change in the
time needed to solve SAT instances from many domains: from a polynomial one to an exponential one.
This observation was at the origine of the integration of restart strategies in modern SAT solvers. The
restart strategies in modern SAT solvers have the following key aspects [34].

• The search starts at the root of the search tree.

• The informations gathered from the previous search steps (like learned clauses and variables ac-
tivities) are maintained.

• Restart the search on the most actives variables.

• Compact the assignment stack.

• Improve the order of assumptions.

2.7.2 Lazy Data Structures in modern SAT solvers

The performance of an implementation of the CDCL algorithm depends also on the data structures. For
a survey see [37]. In this section some of the data structures integrated in SAT solvers are described
[37, 38].

Adjacency Lists

Adjacency lists is a data structure where clauses are represented as lists of literals and each variable x
contains a complete list of clauses that contain the literal x or the literal ¬x.

Assigned Literal Hiding

An assigned literal hiding maintains for each clause three lists: unassigned, assigned TRUE and assigned
FALS E.
A clause is satisfied if at least one of its literals are assigned TRUE, unsatisfied if all its literals are
assigned FALS E, and unit if exactly one literal is unassigned and the remaining are assigned FALS E.

The Counter-based Approach

The counter-based approach is another way to get unsatisfied, satisfied and unit clauses. Support each
clause with two counters (nt, n f ) where nt is the number of literals assigned TRUE and n f is the number
of literals assigned FALSE.
The clause C is unsatisfied if n f = |C|, satisfied if nt ≥ 1, and unit if n f = |C| − 1 and nt = 0 [28].
When a clause becomes unit, it has to check which literal needs to be set to TRUE [38].
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Counter-based Approach with Satisfied Clause Hiding and Assigned Literal Hiding

If a clause C becomes satisfied, it will hidden from the list of clauses of all the literals in it.This technique
is used [39] to avoid the problem that a clause is satisfied by more than one of its literals. Also in this
technique literals that are assigned FALS E are hidden from the list of literals in clauses.

Lazy data structures

A literal x may have a reference to a large number of clauses. This is a problem for adjacency list-based
data structures, since most of these clauses need not be analyzed when x is assigned. Lazy data structures
is presented to solve this problem such that a literal maintains a reduced set of clause references. Ex-
amples of lazy data structures are Head-Tail lists data structure [40] and two watched literals method [41].

Two Watched Literals
The idea is the following [34]:

• Watch two unassigned literals for each active clause.

• The clause that contains the two watched literals cannot be used in unit propagation.

• If backtracking is done then no update is needed.

The use of the two watched literals method often achieves significant reductions of the computation time.

2.8 Branching Rules

Many heuristics are proposed to serve as branching rules in SAT solvers (that is to choose the next literal
to assign). We review in this section some of the well-known branching rules (see [42, 43, 44, 45, 46]
for more details). Branching on a literal x means calling DPLL(Σ|x), and if we get a contradiction, we
call DPLL(Σ|¬x)).

2.8.1 A branching Rules Model

Ouyang in [47] introduced a method for choosing a literal that serves as a paradigm for branching rules.
This paradigm consists of :

1. A literal-weight w(Σ, x), where Σ is a CNF and x is a literal.

2. A function Φ that counts the score of given variable (aggregates the weight of the two associated
literals).

The paradigm works by :

1. Finding a variable x that maximizes Φ(w(Σ, x),w(Σ, x)).

2. Choosing x if w(Σ, x) ≥ w(Σ, x) and choosing x otherwise.

If more than one variable maximizes Φ then a variable is selected randomly or a new heuristic, called
tie-breaker, is used.

2.8.2 VSIDS Rule

The VSIDS branching rule is a popular branching rule introduced in chaff [27] and it most widely used
in the modern SAT solvers. It can defined as follows.

Definition 64. (VSIDS Branching Rule) [27]
VSIDS branching rule consists of the following steps.
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1. introduce an activity for each literal and initialize it to 0.

2. When a learnt clause is generated, increment the activity of the literals appearing in it.

3. Choose an unassigned literal that has the highest activity.

2.9 Preprocessing approaches

Before calling DPLL or CDCL some preprocessing techniques are used to simplify the formula while
preserving satisfiability. In this section, we describe some of these preprocessing techniques (see for
example [48, 49, 38, 50, 51, 52, 53, 54, 55, 56] for more details).

2.9.1 HypBinRes+Eq: Hyper-Resolution and Equality Reduction

In this section, we describe HypBinRes as introduced in [50] which is a particular hyper-resolution rule,
augmented with equality reduction for preprocessing the input CNF.
HypBinRes is the process for implying new binary clauses and then to use these binary clauses to deter-
mine,

1. implied literals, or

2. equivalent literals.

In each of these two cases, the given CNF can then be simplified to one that does not contain these
kinds of literals [50]; for more details see [50, 51, 52]. In [50] three techniques, HypBinRes, equality
reduction and unit clauses reduction are used. They used these three rules to build a HyperPreprocessing
Algorithm which is an efficient algorithm for simplifying the initial CNF.

HypBinRes

Definition 65. (Resolution)[50].
The resolution is the inference rule of producing the resolvent of two clash clauses, see section 1.3.3.

Definition 66. (Hyper-Resolution).
The hyper-resolution inference rule is a resolution rule that involves more than two clauses

Definition 67. (HypBinRes)[50].
HypBinRes inference rule is a hyper-resolution inference rule that takes as input a single n-ary clause
(n ≥ 2) {l1, l2, . . . , ln} and n − 1 binary clauses {¬li, `},(i = 1, . . . , n − 1) and output the binary clause
{`, ln}.

Example 5. Let {a, b, c, d}, {¬a, e}, {¬b, e}, {¬c, e} be the input clauses, then HypBinRes produces the
binary clause {d, e}.

Remark 11. [50].

1. If we consider one more binary clause then HypBinRes can be used to obtain unit clauses, for
example with {a, b, c, d}, {¬a, e}, {¬b, e}, {¬c, e}, {¬d, e}, hyper-resolution yields the unit clause {e}.
Equivalently,

(a) First by using HypBinRes on {a, b, c, d}, {¬a, e}, {¬b, e}, {¬c, e} we get the binary clause {d, e}.

(b) Second by using an ordinary resolution step with this binary clause {d, e} with the clause
{¬d, e} yields the unit clause {e}.

2. If the input n-ary clause is binary, HypBinRes reduces to the resolution of binary clauses. for
example if the n-ary clause is {a, b} then with the clause {¬a, e}, HypBinRes produces the binary
clause {a, e}.
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Equality Reduction

Definition 68. (Equality Reduction) [50].
Equality reduction is the binary equivalent literal propagation (see section 1.3.5), so
if {¬a, b} and {a,¬b} are clauses of CNF Σ, Equality reduction of a CNF Σ (denoted by EqReduce(Σ)
[50]

1. First replace all occurrences of b in Σ by a.

2. Then remove the clauses that contain both a and ¬a.

3. Third remove the duplicate of a (or ¬a) from the clauses.

Example 6. Let Σ = {{a,¬b}, {¬a, b}, {a,¬b, c}, {b,¬d}, {a, b, d}} then EqReduce(Σ) = {{a,¬d}, {a, d}}

Unit Clauses Reduction

Definition 69. [50]
Unit clauses reduction is a one step of unit propagation (see section 1.3.2). So if a CNF contains a unit
clause {l} then unit clauses reduction (denoted by UR(l) [50]) consists in removing all clauses containing
l, and then in removing ¬l from all remaining clauses.

HypBinRes+Eq Closure

Definition 70. (HypBinRes+Eq Closure) [50]
HypBinRes+eq closure is the result of applying unit reduction, HypBinRes, and equality reduction rules
to a CNF until no more new inferences can be made with these rules.

Definition 71. (HypBinRes+Eq Closed CNF) [50]
A CNF is called HypBinRes+eq closed if and only if applying unit reduction, HypBinRes, and equality
reduction to it infers nothing new.

Theorem 2. [50]
The HypBinRes+eq closure of a CNF Σ is unique up to renaming. That is, the order in which the inference
rules are applied is irrelevant, as long as we continue until we cannot apply them anymore.

Theorem 2 allows these inference rules to be freely applied in any order.

UP and HypBinRes+Eq

In this section the relationship between UP and HypBinRes is presented [50]. The authors in [50] gave
the following theorem that explains the relationship between UP and HypBinRes.

Theorem 3. UP is more powerful than a single HypBinRes resolution step, but not as powerful as a
sequence of HypBinRes resolution steps.

More precisely:

1. If {a, b} can be produced by a single HypBinRes step, then either UP(¬a) � b or UP(¬b) � a.

2. There are CNFs from which a binary clause {a, b} can be produced from a sequence of HypBinRes
steps, but neither UP(¬a) � b nor UP(¬b) � a.

3. In a CNF with no unit clauses (we can remove all units by unit propagation phase), if UP(¬a) � b
then there is a sequence of HypBinRes steps that produce {a, b}.
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Performing HypBinRes+Eq Closure with UP

We can obtain HypBinRes+Eq closure by repeatedly applying HypBinRes, unit resolution, and equality
reduction until we could not conclude anything more from these three rules.
By Theorem 3 we can get HypBinRes closure by repeatedly applying UP on the literals of the CNF, see
[50] for more details.

2.9.2 NiVER: Non Increasing Variable Elimination Resolution

The preprocessing NiVER focuses on variables elimination [49]. On application SAT instances, it con-
fers reducing the number of variables up 58%, the number of clauses up to 46% and the literal count by
74% [49].
See algorithm 3

Algorithm 3: NiVER CNF preprocessor[49]

1 Input: a CNF formula Σ;
2 Output: a simplified CNF formula;
3 repeat
4 entry← FALS E;
5 forall the v ∈ Var(Σ) do
6 PC ← {C : C ∈ Σ, lv ∈ C};
7 NC ← {C : C ∈ Σ,¬lv ∈ C} ;
8 R← {};
9 forall the P ∈ PC do

10 forall the N ∈ NC do
11 R← R ∪ Resolve(P,N);
12 Old − Num − Lits← Number of literals in (PC ∪ NC);
13 New − Num − Lits← Number of literals in R;
14 if Old − Num − Lits ≥ New − Num − Lits then
15 Σ← Σ − (PC ∪ NC), Σ← Σ ∪ R, entry← TRUE;

16 until ¬ entry;
17 return Σ;

Notes 11. ([49])
Some notes are necessary to explain NiVER and how to deal with variables in the CNF.

1. First it does not focus on the occurrences of variables (it sometimes removes variables with more
than 25 occurrences). Instead it detects for each variable if this variable can be removed using
Variables Elimination by Resolution (VER) without increasing the literal count. If this is the case,
it eliminates the variable by VER.

2. So, NiVER is different from [53] which focuses on variables with two occurrences and from
2clsVER [54], which uses VER.

3. When VER removes a variable, a lot of resolvents must be added. The tautologies are not consid-
ered and the resolvents which are not tautologies are added to the CNF and the clauses that are
containing the eliminated variable are deleted from the CNF.

4. NiVER does not use any other simplification such as subsumption or unit propagation (either
explicitly nor implicitly) in contrast to previous preprocessors such as HyPre [50] and 2-simplify
[55].
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2.9.3 SATELITE : Effective Preprocessing in SAT through Variable and Clause Elimi-
nation

The authors in [48] extend the preprocessor NiVER [49] by introducing three techniques: subsumption,
self-subsuming resolution and variable elimination by substitution. These techniques could shorten the
given CNF better than the previous preprocessing, as well as reducing the solving time of SAT solvers
on industrial SAT instances.

Definition 72. (Elimination by Clause Distribution)[48]
Let Σ be a CNF, x ∈ var(Σ), S x denote the set of clauses containing x and S ¬x denote the set of clauses
containing ¬x.
S x ⊗ S ¬x = {η[x,C1,C2] : C1 ∈ S x,C2 ∈ S ¬x} where η[x,C1,C2] denotes the resolvent of the clauses C1

and C2 (see section 1.3.3).
If S = S x ∪ S ¬x then the of replacement S by S x ⊗ S ¬x is called elimination by clause distribution.

The authors in [48] take only the non-tautological clauses that result from the elimination process by
clause distribution and discard tautologies.

Definition 73. (Self-Subsuming Resolution)[48]
Let Σ be a CNF and C1,C2 ∈ Σ such that C1 = {x} ∪ D1 and C2 = {¬x} ∪ D2 and D2 ⊆ D1, the process
of adding the resolvent η[x,C1,C2] = D1 ∪ D2 = D1 [which subsumes C1] and removing C1 is called
self-subsuming resolution.

See example 3 for an illustration of self-subsuming resolution operation.
To give the definition of the operation of variable elimination by substitution, we need the definition of
the output of an AND gate (see section 2.9.4 for a general approach on the equations of gates).

Definition 74. (Output of an AND Gate) [48]
Let Σ be a CNF and {x,¬a,¬b}, {¬x, a}, {¬x, b} be clauses in Σ. We can get from these clauses the gate
(AND gate) x = a ∧ b with input variables a, b and the output variable x. The output variable x is said
to be functionally dependent on a, b and the equation x = a ∧ b is called a definition of x.

Theorem 4. [48]
Let Σ be a CNF formula, G ⊆ Σ be the subset of clauses used to recover the gate with output x. We note
S x and S ¬x the sets of clauses of Σ that contain x and ¬x respectively. Similarly, we note Gx and G¬x

the set of clauses of G that contain x and ¬x, respectively. Let R = S \ G the set of remaining clauses
not used to recover the gate, and Rx, R¬x the sets of clauses that contain x and ¬x, respectively. As
S = (Gx ∪ Rx) ∪ (G¬x ∪ R¬x), then

1. the set of resolvents S ′ = S x ⊗ S ¬x can be partioned as follows: S ′ = S ′′ ∪G′ ∪ R′ where
S ′′ = (Rx ⊗G¬x) ∪ (Gx ⊗ R¬x), G′ = Gx ⊗G¬x, R′ = Rx ⊗ R¬x, and,

2. S ′′ � G′ ∪ R′.

Definition 75. (Variable Elimination by Substitution)[48]
Using the same notation as theorem 4, the process elimination of functionally dependent variables such
that the clauses R′ and G′ are not added is called variable elimination by substitution.

In addition to these three rules, the authors in [48] used one supplementary rule which they called
hyper-unary resolution. Recall that in the hyper-binary resolution (see definition 67), we take one n-ary
clause and n − 1 binary clauses and output a binary clause. The hyper-unary resolution rule is similar to
hyper-binary resolution but the output is a unit clause instead of a binary clause.

Definition 76. (Hyper-Unary Resolution)[48]
Let C be a clause and C1,C2, . . . ,Cn be n binary clauses, the hyper-unary resolution rule is a hyper
resolution rule that takes C, C1,C2, . . . ,Cn as input and output a unit clause.
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Example 7. Let {a, b, c, d}, {¬a, e}, {¬b, e}, {¬c, e}, {¬d, e} be clauses in a CNF. The hyper-unary resolu-
tion yields the unit clause {e}.

Using these rules, the authors in [48] provide an implementation that led to a considerable reduction
of the runtime of SAT solvers in comparison with the previous preprocessors.

2.9.4 Structural Knowledge Simplification Approach

The authors in [56] extended the variable elimination by substitution rule that were presented in [48],
see definition 75, by presenting a set of equations y = f (x1, x2, . . . , xn) where f is one of the operators
∧,∨,⇔ and y, x1, x2, . . . , xn are some of the variables of the given CNF.
Their preprocessor is implemented by distinguishing the input CNF into two parts

1. The first part is a set of clauses of the CNF that can be used to extract a set of equations (a set of
gates) of the form y = f (x1, x2, . . . , xn), f ∈ {∧,∨,⇔}, where y is called the output variable of the
gate.

If the first part contains k output variables then we can reduce the set of interpretations to
be checked from 2n into 2n−k, where n is the number of variables of the original formula.

2. The second part is a set of clauses of the CNF that cannot be used to extract the set of
equations. A clause C = x1 ∨ x2 · · · ∨ xn from the second part can be interpreted as a gate
TRUE = ∨(x1, x2, . . . , xn).
The authors in [56] search to simplify this remaining set of clauses by reducing the number of
clauses and variables involved in these clauses. Such simplifications allow the number of input
variables of the extracted set of equations to be decreased.

The simplifications of the remaining set of clauses are carried as follows.

Remark 12. (Simplifications of the remaining set of clauses)

(a) Looking for nf-blocked clauses (see definition 82) which generalize the blocked clauses no-
tion (see definition 81) and removing these nf-blocked clauses from the given CNF.

(b) Looking for UP-redundant clauses (see definition 83) which are special cases of redundant
clauses, and removing these UP-redundant clauses from the given CNF.

(c) Looking for subsuming resolvents (see definition 84) which subsume at least one of the
clauses from the given CNF and removing these subsumed clauses from the given CNF.

Interestingly, removing these clauses leads also to significant reductions in the number of the
variables.

Definition 77. (Set of gates [System of equations])[56]
A set of equations is a set of gates of the form y = f (x1, x2, . . . , xn) where f ∈ {∧,∨,⇔} and
y, x1, x2, . . . , xn are Boolean variables. The variables x1, x2, . . . , xn are the input variables of the equation
and y is the output variable of the equation.

Definition 78. (The satisfiability of an equation])[56]
An equation is satisfiable if and only if there is an assignment of a truth value to its input and output vari-
ables such that the left and right hand sides of the equation are simultaneously TRUE or simultaneously
FALSE.

Definition 79. (A model of a set of equations) [56]
An interpretation (an assignment of a truth value to their input and output variables) of a set of equations
is a model of this set if and only if it satisfies all the equations of the set.
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Definition 80. (An output variable and an Input variable of a set of gates)[56]
A variable is an output variable of a set of gates if and only if it is an output variable of at least one gate
in the set. An input variable of a set of gates is an input variable of a gate which is not an output variable
of the set of gates.

An output variable of an equation is called sometimes definable variable and the equation is called
a definition of this output variable. In spite of knowing k output variables, one can reduce the set of
interpretations to be checked from 2n into 2n−k. However, in the general case, proving that an equation
is entailed by a given CNF is coNP-complete [57]. Since the values of the output variables of the set
of equations are known from the values of the input variables of this set of equations, the DPLL-like
algorithms can limit the enumeration process on the input variables. The following two properties are
useful for extracting a gate from a given CNF.

Property 4. [56]
Let Σ be a set of gates, B ⊂ Σ a set of (equivalence, and,or) gates, b ∈ B such that its output variable y
occurs only in B and Σ′ the set of gates obtained by the substitution of y with its definition and removing
b from Σ, then Σ is satisfiable if and only if Σ′ is satisfiable.

Property 5. [56]
Let Σ be a set of gates, any (equivalence, and, or) gate of Σ containing a literal which does not occur
elsewhere in Σ, can be removed from Σ without loss of satisfiability.

We now present the notions and properties that used in [56] to simplify the remaining set of clauses.

Definition 81. (Blocked clause [58])
Let Σ be a CNF and C ∈ Σ be a clause. C is blocked clause if and only if there is a literal l ∈ C such that
for all C′ ∈ Σ with ¬l ∈ C′, C ⊗C′ is tautological.

Property 6. [58]
Let C is a blocked clause in a CNF Σ, Σ is satisfiable if and only if Σ \ {C} is satisfiable.

Definition 82. (nf-blocked clause) [56]
Let Σ be a CNF and C ∈ Σ be a clause. C is nf-blocked clause if and only if there is a literal l ∈ C such
that there exists no resolvent in l or all resolvents are not fundamental.

Property 7. (nf-blocked clause) [56]
Let C is a nf-blocked clause in a CNF Σ, Σ is satisfiable if and only if Σ \ {C} is satisfiable.

Corollary 2. (nf-blocked clause) [56]
Blocked clauses and clauses containing a pure literal are nf-blocked.

Definition 83. (UP-redundant clause )[56]
Let Σ be a CNF and C ∈ Σ be a clause. C is UP-redundant clause if and only if Σ \ {C} �∗ C.

Definition 84. (Subsuming resolvent) [56]
Let Σ be a CNF, a subsuming resolvent is a resolvent from two clauses from Σ that subsumes at least one
clause of Σ.

By using these removable clauses (see remark 12) one can simplify the given CNF [56]. Interestingly,
by removing these clauses,the number of variables is also reduced [56].

2.9.5 ReVivAl : Reprocessing based on Vivification Algorithm

There are two kinds of preprocessors: the first category aims to eliminate variables by a limited applica-
tion of resolution.The second category aims to modify the given CNF by adding and/or removing clauses.
But the problem of the second approach is to measure the relation among the added and removed clauses
with the resolution step. Eliminating clauses may lead to harder sub-formulas and adding clauses may
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increasing the space complexity, but on the other hand the learning scheme showed that adding redundant
information may be of great importance for practical instances of SAT solving. So, in [59], the authors
have adopted an approach that aims to substitute the existing clauses by more constrained ones. More
precisely, the vivification process consists of

1. Finding the minimal redundant sub-clauses for each redundant clause;

2. Using classical learning to get more constrained new clauses;

3. Trying to eliminate some literals from non-redundant clauses or from minimally redundant clauses.

In fact, to reduce a clause, it is first removed from the CNF formula and the opposites of its literals are
assigned one by one according to their lexicographic ordering while applying unit propagation. Given a
CNF formula Σ and c = {l1, l2, . . . , ln} a clause from Σ, assuming that the order in which the literals are
assigned is (¬l1, . . . ,¬ln), we have two possible cases:

1. ∃i ∈ {1, . . . , n − 1} s.t. Σ\{c} ∪ {¬l1, . . . ,¬li} �∗ ⊥. In this case, we have Σ\{c} �∗ c′ with c′ =

(l1 ∨ · · · ∨ li)
This new clause c′ strictly subsumes c. Hence, the original clause can be substituted by the new
one. c′ is not minimally redundant modulo UP since another ordering on the literals {l1, l2, . . . , li}
might lead to an even shorter sub-clause. But by the classical learning, the deduced sub-clause c′

can be shortened again leading to an even smaller sub-clause. A new clause η can be generated by
a complete traversal of the implication graph associated to Σ and to the assignments of the literals
{¬l1, . . . ,¬li}. The complete traversal of the implication graph ensures that the clause η contains
only literals from c′. So, η is a sub-clause of (l1 ∨ · · · ∨ li).

2. Otherwise, since unit propagation is performed after each assignment, if one of the remaining
literals is assigned by this filtering operation, then a sub-clause is produced. If this is the case
then the propagated literal is either assigned positively (it satisfies the removed clause of the CNF
formula) or negatively (it is falsified in this clause). Considering i and j with 1 ≤ i < j ≤ n, the
two possible cases are:

• Σ\{c} ∪ {¬l1, . . . ,¬li} �∗ ¬l j

In this case, one can deduce: Σ\{c} �∗ (l1 ∨ · · · ∨ li ∨ ¬l j)
Applying resolution between this new clause and c (using the variable l j), one obtains:
(l1 ∨ · · · ∨ l j ∨ · · · ∨ ln) ⊗R (l1 ∨ · · · ∨ li ∨ ¬l j) = (l1 ∨ · · · ∨ l j−1 ∨ l j+1 ∨ · · · ∨ ln). This new
clause clearly subsumes c. Hence, the original clause can be substituted by the new deduced
one.

• Σ\{c} ∪ {¬l1, . . . ,¬li} �∗ l j

In this case, one can deduce: Σ\{c} �∗ (l1 ∨ · · · ∨ li ∨ l j)
In this case too, the produced clause subsumes c and enables to “remove” literals from it.

Hence, briefly, we get the following:

1. The iterative assignments of the opposite literals of a clause can produce a reduced clause.

2. Some assignments might lead to a conflict. So, the conflict analysis can be used to produce smaller
sub-clauses in a polynomial time.

3. Hence by above rules and learning scheme, the given CNF can be vivified, that is, it will be easier
to solve.

The Vivification preprocessing is described in Algorithm 4.
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Algorithm 4: Vivification of a CNF formula [59]
Input: Σ : a CNF formula
Output: a vivified CNF formula

1 change←− TRUE; ;
2 while change do
3 change←− FALS E ;
4 foreach c ∈ Σ do
5 Σ←− Σ\{c} ; Σb ←− Σ ;
6 cb ←− ∅ ; shortened←− FALS E ;
7 while (Not(shortened) And (c , cb)) do
8 l←− select_a_literal(c\cb) ;
9 cb ←− cb ∪ {l} ; Σb ←− (Σb ∪ {¬l}) ;

10 if ⊥ ∈ UP(Σb) then
11 cl ←− conflict_analyse_and_learn() ;
12 if cl ⊂ c then
13 Σ←− Σ ∪ {cl} ;
14 shortened ←− TRUE ;

15 else
16 if |cl| < |c| then
17 Σ←− Σ ∪ cl ; cb ←− c ;

18 if c , cb then
19 Σ←− Σ ∪ {cb} ;
20 shortened ←− TRUE ;

21 else
22 if ∃(ls ∈ (c\cb)) s.t. ls ∈ UP(Σb) then
23 if (c\cb) , {ls} then
24 Σ←− Σ ∪ {cb ∪ {ls}} ;
25 shortened←− TRUE ;

26 if ∃(ls ∈ (c\cb)) s.t. ¬ls ∈ UP(Σb) then
27 Σ←− Σ ∪ {c\{ls}} ;
28 shortened←− TRUE ;

29 if Not(shortened) then Σ←− Σ ∪ {c} ;
30 else change←− TRUE ;

31 return Σ ;

2.10 CDCL-based SAT Algorithm

In this section we introduce a generic form of CDCL-based SAT algorithm 5 (see [34]).
This algorithm works as follows:

1. The decision literals set and learnt clauses database are first initialized to an empty set (lines 1 and
2).

2. The closure of the current CNF Σ using unit propagation (denoted by Σ∗) is computed at each
iteration (line 5).

3. If the algorithm detects a conflict (lines 6-10) then we have two cases:

• The set of decisions literals is empty (line 6), in this case the algorithm returns unsatisfiable

35



Chapter 2. SAT Problem

Algorithm 5: CDCL-based SAT solver [34]
Input: CNF formula Σ

Output: A model of Σ or unsat if Σ is unsatisfiable
1 D ← ∅; /* decision literals */

2 ∆← ∅; /* learnt clauses database */

3 while (TRUE) do
4 S ← Σ ∧ ∆ ∧D;
5 if (S∗ = ⊥) then
6 if ((D = 〈〉) then return unsat;
7 α← learningFromConflict(S) ;
8 m← assertion level of α;
9 D ← Dm;

10 ∆← ∆ ∧ α ;

11 else
12 if (timeToReduce()) then
13 ∆← reduceLearntDB();

14 if (timeToRestart()) then
15 D ← ∅;
16 S ← Σ ∧ ∆ ∧D;

17 ` ←decide();
18 if (` = null) then
19 returnD;

20 D ← D∧ `;

• The set of decisions literals is not empty, in this case a new asserting clause is derived by
learning from conflict (line 7), then the algorithm :

– Backtracks to the assertion level m (line 9);
– Adds the asserting clause to the learnt clauses database (line 10).

4. If there is no conflict (lines 12-20) then the algorithm performs one or both of the following two
steps .

• Reduces the learnt database (lines 12-13) using reduction.

• Restarts the search process (lines 14-16) using restart policies.

5. Choose a new decision literal using VSIDS branching rule and polarity functions [60] then

• Add this literal to the set of decisions (line 20).

• Give it its associated level (line 20).

6. A model is found and the algorithm returns satisfiable if all the variables are assigned (lines 18-19).
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Chapter3
Tractable Classes and Hierarchies of

Tractable Classes

Tractable classes are specific fragments of SAT whose instances can be solved in polynomial time. Most
(but not all) of these tractable classes are provided with two polynomial time algorithms. One algorithm
characterizes the class (it checks whether or not the given instance of SAT belongs to this class) and,
when the instance belongs to the class, the second algorithm solves it by deciding whether this given
instance of SAT is satisfiable or not. There are many tractable subclasses of SAT; we present in this
chapter the well-known classes and focus on tractable classes that make use of the UP algorithm in some
direct or more elaborate ways; we will extend some of them in the forthcoming chapters to yield new
tractable classes. Notice that it might be believed that the number of tractable classes is small following
a wrong interpretation of Schaefer’s dichotomy theorem [61]: this is not the case and there are many
tractable classes. Actually, Schaefer’s theorem is for classes that can be recognized in log space.

3.1 Preliminaries and Notations

We need some notions and notations in order to introduce the tractable classes smoothly.

Definition 85. (Graph,Walk,Trail and Path)

1. (Graph)

• A (finite) undirected graph is an ordered pair G = (V, E) where V is a (finite) set of vertices
(nodes or points) and E is a (finite) set of edges (arcs or lines), where an unordered pair
{u, v} is an edge in G where u, v ∈ V if {u, v} ∈ E. Abstractly (from a set-theoretic perspective)
a finite undirected graph is a subset of the set {{u, v} : u, v ∈ V,V is a finite set}.

• A (finite) directed graph is an ordered pair G = (V, E) where V is a (finite) set of vertices
(nodes or points) and E is a (finite)e set of arcs (directed edges), where an ordered pair (u, v)
is an edge in G where u, v ∈ V if (u, v) ∈ E. Abstractly (from a set-theoretic perspective) a
finite directed graph is a binary relation that is a subset of the set {(u, v) : u, v ∈ V,V is a
finite set} = V × V where V × U denotes the Cartesian product of the two sets V and U.

2. (Walk).
A walk in a directed graph is a sequence v0, e1, v1, . . . , en, vn where vi, i = 1, . . . , n are vertices,
and ei is an edge from vi−1 to vi, i = 1, . . . , n.

3. (Trail).
A trail is a walk in which all edges are distinct.

4. (Path ).
A path is a trail in which all vertices (except possibly the first and last ones) are distinct.

Definition 86. (Tree, Rooted tree, Labeled tree, Labeled rooted tree and Depth of a node)
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1. (Tree).
A tree is an undirected graph where any two vertices in it can be connected by a unique simple
path. G is a tree if and only if G is connected and has n-1 edges.

2. (Rooted tree).
A rooted tree is a tree with one root vertex.

3. (Labeled tree).
A labeled tree is a tree in which each vertex is given a unique label.

4. (Labeled rooted tree).
A labeled rooted tree is a rooted and labeled tree.

5. (Depth of a node).
The depth of a node is the number of arcs in the path that connect the node to the root.

Definition 87. (Directed graph and directed walk)

1. (Directed graph).
A directed graph (or digraph) is a graph where the edges have a direction associated with them.

2. (Directed walk).
A directed walk v0 → · · · → vn in a directed graph is a sequence v0, e1, v1, . . . , en, vn where vi,
i = 1, . . . , n are vertices, and ei is a directed edge from vi−1 to vi,i = 1, . . . , n.

Definition 88. (Directed acyclic graph) A directed acyclic graph is a directed graph without directed
cycles (i.e., there is no directed walk from a vertex that loops back to the same vertex).

Definition 89. (Strongly connected graph)

1. A graph is strongly connected if every two vertices are reachable (i.e., there is a walk from one of
them to the other). The maximal strongly connected subgraphs of a graph are vertex-disjoint and
are called strongly connected components. The strongly connected components of graph can be
computed in O(m + n) time [62] using depth-first-search.

2. If S 1 and S 2 are strongly connected components such that an edge leads from a vertex in S 1 to a
vertex in S 2, then S 1 is a predecessor of S 2 and S 2 is a successor of S 1.

Definition 90. (Undirected bipartite graph)
An undirected bipartite graph is an undirected graph whose set of vertices is divided into two sets U and
V where U ∩ V = ∅ and each edge in the graph has one vertex in U and the other vertex in V.

Definition 91. (Undirected bipartite graph of a CNF.)
Let Σ be a CNF. The undirected bipartite graph of Σ (which will be denoted by UBG(Σ)) is the undirected
bipartite graph where U = C(Σ) and V = V(Σ). Each clause C ∈ U is connected with edges to the
variables involved in it. Also we will denote the set of edges of UBG(Σ) by EDG(UBG(Σ)).

Definition 92. (Hypergraph)
A hypergraph H is a pair H = (X, E) where X is a set (called nodes or vertices), and E ⊆ X is a
non-empty set (called hyperedges or edges).

Definition 93. (Ordered relation)
An ordered relation is a binary relation ≤ over a given set S which is reflexive, antisymmetric, and
transitive, that is, it satisfies :
a ≤ a ∀a ∈ S ; (reflexivity)
If a ≤ b and b ≤ a, then a = b ∀a, b ∈ S (antisymmetry);
If a ≤ b and b ≤ c, then a ≤ c ∀a, b, c ∈ S (transitivity).
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3.2 Trivial tractable classes

We present in this section some trivial tractable classes.

3.2.1 Monotone, positive and negative formulas

Definition 94. A CNF is monotone if and only if all its variables are pure (appears positively or nega-
tively) in the CNF.

Finding a satisfiable truth assignment for monotone CNFs is straightforward (just let the positive
pure variables take the value TRUE and the negative pure variables take the value FALSE).

Definition 95. A CNF is positive (negative) if and only if all its variables is appears positively (nega-
tively) in the CNF. A positive (negative) CNFs is a special case of a monotone CNFs.

3.2.2 No-positive clause and No-negative clause formulas

Definition 96. A CNF is No-positive clause formula if and only if it has no positive clause and it is
No-negative clause formula if and only if it has no negative clause.

Finding a satisfiable truth assignment for No-positive clause CNFs is trivial, just select a negative
literal from every clause and assign the value TRUE to it (FALSE to its corresponding variable) and
similarly for No-negative clause CNFs, just select a positive literal from every clause and assign the
value TRUE to it.

3.2.3 1-valid and 0-valid formulas

Definition 97. (clause-variable matrix).
Let Σ be a CNF. Its clause-variable matrix, denoted by MΣ is the matrix such that its elements (i, j)
have the value +1 if the clause Ci has the literal a j, −1 if it has the literal ¬a j and 0 otherwise, where
a j ∈ V(Σ).

Definition 98. (1-valid and 0-valid formulas).
A formula is 1-valid (resp. 0-valid) if and only if each column of its clause-variable matrix contains at
least +1 (resp. −1).

A 1-valid (respectively 0-valid) has a trivial solution that can be obtained by just assigning all the
variables to TRUE (respectively FALSE).

3.3 Well-known Tractable Classes

We present in this section the well-known tractable classes where the UP-technique plays a central role.

3.3.1 2SAT formulas

A clause is called a Krom clause or 2-clause if and only if it has at most two literals (i.e., it is either the
empty clause or a unit clause or a binary clause). A Krom CNF (often called 2CNF or 2SAT) is a set of
Krom clauses.

The recognition of a 2CNF formula is trivial and can be done in linear time by checking the length
of the clauses in the given CNF.

For solving 2CNF there are many algorithms.
First, the number of Krom clauses depends on the number of variables (the number of Krom clauses

is 4n2 + n + 1 if the number of variables is n). Hence the DP algorithm takes at most O(n2) space and
solves the satisfiability problem for 2CNF in polynomial time [63].
There are many algorithms that solve 2CNF in linear Time [64, 65, 66].
We overview two well-known algorithms: one has polynomial time while the other has linear time
complexity.
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Polynomial-Time Algorithm Based on Davis-Putnam [24]

When two resolvable clauses belong to 2SAT then their resolvent also belongs to 2SAT. Consequently,
if we add resolvents to 2-SAT instance Σ with n variables, then we get at most 1 + 2n + 4

(
n
2

)
= 2n2 + 1

clauses. Hence the algorithm terminates by adding at most O(n2) resolvents. If we do not get the empty
clause then Σ is satisfiable; else (i.e., if we get the empty clause), Σ is unsatisfiable.

A Linear-Time Algorithm [65, 38]

We describe the algorithm presented in [65], which runs in linear-time.
Let Σ be a 2-SAT CNF with m clauses and n variables {x1, . . . , xn}. Σ is associated to a directed graph
G(Σ) defined as follows.

1. For each variable xi in Σ, xiand ¬xi are vertices of the graph G(Σ).

2. For each clause xi ∨ x j in Σ, the edges ¬xi → x j and ¬x j → xi are added to the graph G(Σ).

Hence, G(Σ) has vertices {x1, . . . , xn,¬x1, . . . ,¬xn} and directed edges {(¬xi, x j), (¬x j, xi)|{xi, x j} ∈

Σ}. So, G(Σ) has 2n vertices and 2m edges.

Remark 13. Let Σ be a CNF and let u v denote a directed walk u→ · · · → v in the graph G(Σ).

1. If u  v then if u has the value TRUE in a satisfying truth assignment, then v also has the value
TRUE in this satisfying truth assignment.

2. If u ¬u then u has the value FALSE in every satisfying truth assignments.

3. If u v u then u and v has the same truth value in every satisfying truth assignment.

4. u v if and only if ¬v ¬u.

Property 8. [65].
A 2-SAT formula Σ is unsatisfiable if and only if G(Σ) contains a directed walk x ¬x x.

Algorithm 6: Linear time 2-SAT algorithm

1 Input 2-SAT CNF Σ;
2 Output Σ is SAT or UNSAT;
3 S← strongly connected components of G(Σ);
4 forall the unassigned component S in S do
5 if S contains literals u and ¬u as vertices then
6 return UNSAT;

7 set each literal labelling vertices of S to TRUE;
8 set each literal labelling vertices of S to FALSE;

9 return SAT ;

Algorithm 6 finds a satisfying assignment in O(m + n) time when G(Σ) contains no directed walk of
the form x ¬x x.

3.3.2 Horn, Reverse-Horn and Renamable-Horn Formulas

A Horn (respectively reverse-Horn) clause is a clause a1∨a2∨· · ·∨ak such that at most one of its literals
is positive (respectively negative). A HornCNF (or HornSAT) is a collection of Horn clauses.
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The recognition of Horn formulas is trivial and can be done in linear time by simply checking the
number of positive literals in the clauses of the given CNF.

There are several algorithms that can solve HornCNF in linear time [67, 68, 69, 2, 70, 71], some of
them use the unit propagation approach.

In fact, unit propagation is complete for Horn class, since a Horn CNF without unit clauses is satisfi-
able (it is No-positive clause formula, see section 3.2.2). Hence if a Horn CNF has unit clauses then we
can apply UP on it and we have two cases

1. If we encounter the empty clause then the given CNF is unsatisfiable.

2. If the resulting CNF (it is also a Horn CNF) has no unit clause then it (and hence the given CNF)
is satisfiable.

Renamable-Horn Formulas

A renamable-Horn (or Hidden Horn) formula is a formula that can transformed to Horn formulas by
replacing some of its literals by their negations and vice versa.

Definition 99. (Variable Complementation or Variable Renaming).
Let Σ be a CNF with n variables X = {x1, x2, . . . , xn} and let S ⊆ X, The CNF ΣS results from Σ by
renaming the variables in S , i.e., by replacing all occurrences of xi by ¬xi and all occurrences of ¬xi by
xi.

Note that ΣS and Σ are semantically equivalent.

Definition 100. (Renamable-Horn)
Σ is renamable-Horn if and only if some renaming of Σ is Horn.

We can see the renaming as a mapping r : L(Σ)→ L(Σ) such that

1. r(x) = x or r(x) = ¬x,∀x ∈ L(Σ).

2. r(x) = t if and only if r(¬x) = ¬t, ∀x, t ∈ L(Σ).

There exist 2n such mappings were n is the number of variables of the CNF Σ.

Example 8. 1. Σ = {{¬x,¬y, z}, {x, y}, {¬z}} is renamable-Horn (replace x by ¬x and vice-versa and
replace z by ¬z and vice-versa).

2. Σ = {{¬x,¬y, z}, {x, y,¬z}} is not renamable-Horn. Since for all the 8 renaming mappings, we
cannot obtain a Horn CNF.

The existence of this Horn renaming (the recognition algorithm) can be checked in linear time, and
these algorithms provide the renaming set also. So we can solve renamable-Horn formulas in linear
time: first, by renaming the formula as a Horn formulas and then by solving these Horn formulas
[72, 73, 74, 75].

As an illustration, we describe two recognition algorithms: one runs in quadratic time and is due to
Lewis [72] and the other exhibits a linear time and is due to Aspvall [73].

A Quadratic Time recognition Algorithm for Renamable-Horn [Lewis [72]]

Lewis [72] presented a quadratic time recognition algorithm for renamable-Horn. The idea of the algo-
rithm is to reduce the renamable-Horn problem to the satisfiability problem of 2SAT instance.

Notation 5. [72]
Let Σ = {C1, . . . ,Cm} be a CNF with m clauses and n variables where |Ci| = li, 1 ≤ i ≤ m and let

Ci = {ui1 , . . . , uili } then Σ− =
m⋃

i=1

⋃
1≤ j<k≤li

{{ui j , uik }} .
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Property 9. [72]
Σ is renamable-Horn if and only if Σ− is satisfiable.

The CNF Σ− can be constructed in O(mn2) time [72] and tesing its satisfiability and finding a model
of it can be done in linear time, see section 3.3.1.
This model can be used to rename Σ [72]. So the total time for renaming Σ is O(mn2) [72].

A linear time recognition algorithm for renamable-Horn (Aspvall [73])

The algorithm of Aspvall [73] is designed to recognize renamable-reverse-Horn formulas. This is equiva-
lent to recognize renamable Horn formulas. Indeed, one just needs to replace positive literals by negative
ones and vice versa. Such operation can be done in linear time.
The linear time is achieved by reducing the number of clauses in the associated 2SAT, see section 3.3.2.
This reduction extends the set of variables [75] .

Notation 6. [73]

1. Let Σ be a CNF and x ∈ V(Σ), truthx(Σ) is the truth value of x in a satisfying assignment of Σ. If Σ

is unsatisfiable, truthx(Σ) is undefined.

2. Let C = u1 ∨ u2 ∨ · · · ∨ uk be a clause in Σ and let yC
1 , y

C
2 . . . , y

C
k−1 be auxiliary variables associated

with C.
Σ= =

∧
C∈Σ,|C|≥2

[(u1 ∨ yC
1 ) ∧ [

∧
1<i<k

((¬yC
i−1 ∨ ui) ∧ (¬yC

i−1 ∨ yC
i ) ∧ (ui ∨ yC

i ))] ∧ (¬yC
k−1 ∨ uk)]

Property 10. [73]
Let Σ be a CNF and Σ− be as defined in section 3.3.2.

1. Σ is reverse-Horn if and only if the truth assignment that assigns the value TRUE to all variables
of Σ satisfies Σ− .

2. Σ is renamable-reverse-Horn if and only if Σ− is satisfiable. moreover if Σ− is satisfiable then the
renaming mapping r : L(Σ)→ L(Σ) such that

• r(x) = x if truthx(Σ−) = TRUE
• r(x) = ¬x if truthx(Σ−) = FALS E

Transfoms Σ to a reverse-Horn CNF.

3. Σ= is satisfiable if and only if Σ− is satisfiable

Property 11. [73]
Σ is renamable-reverse-Horn if and only if Σ= is satisfiable. Moreover if Σ= is satisfiable then the renam-
ing mapping r : L(Σ)→ L(Σ) such that

• r(x) = x if truthx(Σ=) = TRUE

• r(x) = ¬x if truthx(Σ=) = FALS E

transforms Σ to a reverse-Horn CNF.

The CNF Σ= is a 2SAT formula such that |Σ=| = O(|Σ|) and the number of its variables is O(n + |Σ|)
where n is the number of variables of Σ. So using any linear time algorithm for 2SAT (see section 3.3.1),
we can decide if a reverse-Horn-renaming exists and construct one in O(n + |Σ|) = O(|Σ|) time. This
construction is performed as follows [73]:

• Constuct Σ=.

• Check if Σ= is satisfiable.

1. If no, there is no reverse-Horn-renaming .
2. If yes, then the reverse-Horn-renaming mapping is r : LIT (Σ)→ LIT (Σ) such that

– r(x) = x if truthx(Σ=) = TRUE.
– r(x) = ¬x if truthx(Σ=) = FALS E.
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3.3.3 Extended Horn, Hidden Extended Horn, Simple Extended Horn, CC-Balanced
Formulas and SLUR Algorithm

Extended Horn, Hidden Extended Horn Formulas and Simple Extended Horn

The "hidden" extended Horn is an extended class of Horn that can be solved in linear time by the same
technique that solves Horn class (i.e., the UP technique).
More precisely the UP-based algorithm (see algorithm 7) can be used to find a solution to the linear
system Ax ≥ b
x ≤ e (II)
x ≥ 0 .
which is the linear relaxation (see definition 101) of the linear system
Ax ≥ b
x ≤ e (I)
x ≥ 0, x integral.
The "hidden" extended Horn is defined in such a way that an instance in it is satisfiable if and only if
algorithm 7 finds no contradiction.
So to introduce the "hidden" extended Horn class, we need the following representation of a CNF as a
linear system.

Notation 7. [76]
Let A be an m × n matrix and x and b are vectors of lengths n and m respectively and e and 0 are the
vectors of ones and zeros of length n respectively. Consider the linear system
Ax ≥ b
x ≤ e (I)
x ≥ 0, x integral.
If x = (x1, . . . , xn) is a solution to this system then xi ∈ {0, 1}, i = 1, . . . , n. One [76] can represent
a clause as a linear inequality such that the positive literal x1 in the clause corresponds to the binary
variable x1 in the inequality and the negative literal ¬x1 in the clause corresponds the binary variable
1 − x1 in the inequality and such that the summation of the variables in the inequality is greater than or
equal 1 where the value x j = 1 in the inequality corresponds to the x j = TRUE in the clause and the
value x j = 0 in the inequality corresponds to the x j = FALS E in the clause.
For example the clause x1 ∨ ¬x2 corresponds to the inequality x1 + 1 − x2 ≥ 1, x1, x2 ∈ {0, 1}. We
can transform the one in the left side of the inequality to the right side and rewrite the inequality as
x1 − x2 ≥ 0, x1, x2 ∈ {0, 1}. In general, one can transform the 1s numbers in the left side of the inequality
to the right side and rewrite the inequality as ax ≥ a0 such that

1. a is a vector where its components are in {0, 1,−1};

2. x is a vector (x1, . . . , xn), xi ∈ {0, 1}, i = 1, . . . , n;

3. a0 is 1 minus the number of -1’s in a.

So the CNF with m clauses can be represented as a linear system (I)

Definition 101. (The linear relaxation of a linear system) [76]
The linear relaxation of the linear system (I) is obtained by removing the integral condition on the vector
x.

If the linear relaxation of a linear system has a solution then one can use an algorithm in linear
programming to find this solution.
To define extended Horn class and simple extended Horn, we use elements of graph theory [77] (this is
not the definition used in [76] but they are equivalent).

Definition 102. (Extended Horn and Simple Extended Horn)[77]
Let Σ be a CNF.
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• Σ is extended Horn if there is a rooted directed tree T , indexed on the variables of Σ and ∀C ∈ Σ,

1. All the positive literals of C are consecutive on a single path of T;

2. There is a partition of the negative literals of C into sets N1,N2, . . . ,Nnc , where nc is at least
1, but no greater than the number of negative literals of C, such that for all 1 ≤ i ≤ nc, all
the variables of Ni are consecutive on a single path of T;

3. For at most one i, the path in T associated with Ni begins at the vertex in T from which the
path associated with positive literals begins;

4. For all remaining i, the path in T associated with Ni begins at the root of T .

• Σ is simple extended Horn if condition 3 above is not allowed, i.e., if for all i, the path in T
associated with Ni begins at the root of T .

Property 12. [78]
HORN ⊂ S imple Extended Horn ⊂ Extended Horn.

Property 13. [76]
An extended Horn set is satisfiable if and only if the linear relaxation of the linear system (I) has a
solution.

Algorithm 7: UP-ExtendedHorn [76]

1 If there are no unit clauses, assign every variable the value 1
2 , and stop. Otherwise, go to Step 2.

2 Fix the values of the variables in unit clauses so as to satisfy the unit clauses. If this requires
setting a variable to both 0 and 1, stop: the linear relaxation is insolvable. Otherwise, go to Step 3.

3 Perform all possible unit resolutions on the current set of clauses, and eliminate all clauses
subsumed by the unit clauses in the current set (including the unit clauses themselves). Add the
resolvents to the current set, and return to Step 1.

The linear relaxation of (I) does not have a solution if in the algorithm 7 a contradiction is produced
in step 2, but if the algorithm terminates in step 1, then since all remaining clauses have at least two
literals, they are satisfied by giving every variable in them the value 1

2 . So, we have

Property 14. [76]
Linear relaxation of (I) has a solution if and only if algorithm 7 finds a solution.

Property 15. [76]
An explicit or hidden extended Horn set is satisfiable if and only if algorithm 7 finds no contradiction.

Unfortunately, there is no known algorithm to recognize extended Horn and hidden extended Horn
class, but fortunately there is a recognition algorithm for simple extended Horn.

CC-Balanced (or Balanced) Formulas

Definition 103. (CC-Balanced (or Balanced) Formulas)[79]
A CNF Σ is CC-balanced if and only if for every submatrix of MΣ that has exactly two nonzero entries
for each row and column, the sum of the entries is a multiple of 4.

Example 9. Σ = {{x1,¬x2}, {¬x1, x2}} is a balanced formula where MΣ =

(
1 −1
−1 1

)
, note that the sum

of the entries is 0 and hence a multiple of 4.

CC-balanced CNF can be recognized and solved in polynomial time [80].
A decision algorithm for CC-balanced formulas
We need the following definitions for the solving algorithm.
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Definition 104. (Generalized Set Covering Polytope) [80]
Let M be 0, ±1 matrix and let n(M) be the vector whose ith components ni(M) are the number of -1’s in
the ith row of matrix M.
The generalized set covering polytope of M is Q(M) = {x : Mx ≥ 1 − n(M), 0 ≤ x ≤ 1}.

Definition 105. (ideal 0, ±1 matrix)[80]
A 0, ±1 matrix is ideal if and only if the generalized set covering polytope is integral.

Theorem 5. [80]
Let M be 0, ±1 matrix, the following statements are equivalent:

1. M is balanced.

2. For each submatrix A of M, the generalized set covering polytope Q(A) is integral.

Property 16. [80]
Let Σ be a CNF with m clauses Ci = (

∨
j∈Pi

x j) ∨ (
∨
j∈Ni

¬x j), i = 1, . . . ,m. Σ is satisfiable by a truth

assignment if and only if the corresponding 0,1 vector satisfies the system of inequalities∑
j∈Pi

x j −
∑

j∈Ni

x j ≥ 1 − |Ni|, i = 1, . . . ,m.

Notes 12. [80]
We can rewrite the system of inequalities in Property 16 as
Mx ≥ 1 − n(M).......(III)
where M is 0, ±1 matrix.

Definition 106. (Ideal formulas) [80]
A CNF is ideal if and only if the corresponding 0, ±1 matrix M in (III) is ideal.

Property 17. [80]
Every balanced CNF is an ideal CNF.

We can solve the satisfiability problem of the ideal class (and hence of the balanced class) in
polynomial time by linear programming [80]. But using the following property, we can solve the
satisfiability problem of the ideal class (and hence of the balanced class) by a more efficient algorithm
than linear programming [80] (see Algorithm 8).

Property 18. [80]
Let Σ be an ideal CNF without unit clauses. For every variable x in Σ there exist at least two truth
assignments satisfying Σ: one in which x is TRUE and one in which x is FALSE.

A recognition algorithm for CC-balanced formulas
The recognition algorithm for CC-balanced formulas is somehow complicated. We introduce it briefly,
to do that we need some definitions from graph theory (for details see [80]).

Definition 107. [80]

1. (chord in a cycle)
A chord is an edge that is not part of the cycle but connects two vertices (that are necessarily not
adjacent) of the cycle.

2. (A hole in an undirected graph)
In an undirected graph, a hole is a chordless cycle of length greater than 3.

3. (A balanced cycle)
A cycle is balanced if and only if its length is a multiple of 4.
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Algorithm 8: ideal-balanced decision algorithm[80]

1 Input: An ideal CNF formula Σ;
2 Ouput: Either the CNF formula Σ is S AT or it is UNS AT ;
3 if Σ = {} then
4 return S AT ;

5 while Σ , {} do
6 Σ← UP(Σ);
7 if ⊥ ∈ Σ then
8 return UNS AT ;

9 Choose arbitrary clause C in Σ;
10 Choose arbitrary variable x in C;
11 Choose arbitrary one of the following;
12 Σ← Σ ∧ x;
13 Σ← Σ ∧ ¬x;

14 return S AT ;

4. (A balanced graph)
A graph is balanced if and only if all its chordless cycles are balanced.

5. (A major node for a hole)
A node v is major for a hole H if and only if v has at least three neighbors in H.

Notes 13. [80])
A balanced graph is simple and bipartite.

Definition 108. (The bipartite representation of a matrix)[80]

1. (The bipartite representation of a 0,1 matrix)
The bipartite representation of a 0, 1 matrix A is the bipartite graph G(A) = (Vr ∪ Vc, E) having
a node in Vr for every row of A, a node in Vc for every column of A and an edge i j joining nodes
i ∈ Vr and j ∈ Vc if and only if the entry ai j of A equals 1.

2. (bipartite representation of a 0,±1 matrix)
The bipartite representation of a 0, ±1 matrix A is the signed bipartite graph G(A) = (Vr ∪ Vc, E)
having a node in Vr for every row of A, a node in Vc for every column of A and an edge i j joining
nodes i ∈ Vr and j ∈ Vc if and only if the entry ai j of A is nonzero. Moreover, ai j is the sign of the
edge i j.

Notes 14. [80]

1. The bipartite representation of a 0,±1 matrix extends the bipartite representation of a 0,1 matrix.

2. For any bipartite graph G(A) = (Vr ∪ Vc, E), with signs ±1 on its edges, there is a unique matrix
A, for which G = G(A) (up to transposition of the matrix, permutation of rows and permutation of
columns).

Definition 109. (A clean signed bipartite graph) [80]
A signed bipartite graph is clean if and only if it is either balanced or contains a smallest unbalanced
hole H with no major vertices for H.

Theorem 6. [80]
Let H be the smallest unbalanced hole in a signed bipartite graph. H contains two edges such that every
major node for H is adjacent to at least one of the endnodes of these two edges.
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Property 19. [80]
There exists a polynomial time algorithm which takes as input a signed bipartite graph G and outputs a
clean graph G′, such that G is balanced if and only if G′ is balanced.

Definition 110. (A wheel and an odd wheel in bipartite graph) [80]
In a bipartite graph, a wheel is (H, v) where H is a hole and v is a node having at least three neighbors
in H. The wheel (H, v) is odd if and only if v has an odd number of neighbors in H .

Definition 111. (A detectable 3-wheel) [80]
A detectable 3-wheel is a wheel (H, v) where v has three neighbors in H and two of the neighbors of v in
H have distance two in H .

Definition 112. [80]

1. (3-path configuration)
In a bipartite graph, a 3-path configuration is an induced subgraph consisting of three internally
node-disjoint paths connecting two nonadjacent nodes u and v and containing no edge other than
those of the paths.

2. ( 3-odd-path configuration)
In a bipartite graph, if the three paths in the 3-path configuration have an odd number of edges,
the 3-path configuration is called a 3-odd-path configuration.

Theorem 7. [80]
A bipartite graph is balanceable if and only if it does not contain an odd wheel or a 3-odd-path configu-
ration as an induced subgraph.

Property 20. (Smallest 3-odd-path configuration in subgraph from smallest 3-odd-path configuration in
graph )[80, 81]
In a bipartite graph G, consider a 3-odd-path configuration with the smallest number of nodes, induced
by paths P1, P2, P3 connecting nodes u and v and let mi be a middle node of path Pi, i = 1, 2, 3. In a
subgraph obtained from G by removing some neighbors of u and v, any shortest path from mi to u and v
can be substituted for Pi yielding another smallest 3-odd-path configuration.

Property 21. [81]
Using property 20 Zambelli [81] show that

1. There exists a polynomial time algorithm to detect whether a bipartite graph contains a 3-odd-path
configuration.

2. There exists a polynomial time algorithm that checks whether a bipartite graph that does not
contain a 3-odd-path configuration contains a detectable 3-wheel.

But by Theorem 7, if a bipartite graph contains a 3-odd-path configuration or a detectable 3-wheel
then it is not balanceable.

Property 22. [81]
Let G be a clean signed bipartite graph that does not contain a 3-odd-path configuration or a detectable
3-wheel. There exists a polynomial time algorithm that checks whether G is balanced .

SLUR algorithm

The structural properties of CNFs were not use to define the class S LUR (Single Look-ahead Unit Res-
olution solvable) but a nondeterministic algorithm was used instead.

Definition 113. (SLUR formulas)[82, 83]
A function F ∈ S LUR if and only if the algorithm 9 does not return “give up" for any of the nondeter-
ministic choices in steps 7 and 15
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The SLUR class contains both hidden extended Horn and balanced formulas. In fact, the SLUR
algorithm solves a larger class than both hidden extended Horn and balanced classes [83].

Property 23. [83]
Let Σ and Σ′ be CNFs such that Σ is solved by the SLUR algorithm and the clauses of Σ′ are logical
consequences of Σ then the SLUR algorithm solves Σ ∪ Σ′.

Example 10. [83]
Let Σ be a CNF and C1,C2,C3,C4 ∈ Σ and let a, b be variables such that {a, b} ⊆ C1, {a,¬b} ⊆ C2,
{¬a, b} ⊆ C3, {¬a,¬b} ⊆ C4: we have that Σ does not belong to the hidden extended Horn class.

Example 11. [83]

1. Let Σ be a non-empty CNF that solved by the SLUR algorithm and C ∈ Σ and a, b be two variables.
Let Σ′ = Σ ∪ {C ∪ {a, b}, {C ∪ {a,¬b}, {C ∪ {¬a, b}, {C ∪ {¬a,¬b}}.
The SLUR algorithm solves Σ′ by property 23 but Σ′ does not belong to the hidden extended Horn
class by example 10.

2. Let V be a set of three or more variables and Σ be a CNF emphasizing that an even number of
variables of V are TRUE.
For example if V has exactly three variables, i.e.,
V = {a, b, c} then Σ = {{¬a, b, c}, {a,¬b, c}, {a, b,¬c}, {¬a,¬b,¬c}.
Σ is solved by SLUR but Σ does not belong to both hidden extended Horn class (by example 10)
and balanced formulas (by checking its matrix).

Algorithm 9: SLUR algorithm S LUR(Σ)[82, 83]

1 Input: A CNF formula F with no empty clause ;
2 Output: A partial truth assignment satisfying F,UNS AT , or give-up;
3 (F, t)← UP(F) ;
4 if F contains an empty clause then
5 return UNS AT ;

6 while F is not empty do
7 Select a variable x present in F;
8 (F1, t1)← UP(F ∧ x);
9 (F2, t2)← UP(F ∧ x);

10 if both F1 and F2 contain an empty clause then
11 return “give up";

12 if F1 contains an empty clause then
13 (F, t)← (F2, t ∪ t2);
14 else if F2 contains an empty clause then (F, t)← (F1, t ∪ t1);
15 else Choose one of the following two steps;
16 (F, t)← (F1, t ∪ t1);
17 (F, t)← (F2, t ∪ t2);

18 return t ;

The SLUR class is not believed to be recognizable in polynomial time (in fact checking whether a
CNF belongs to SLUR is Co-NP-Complete [84]).
In Algorithm 9, UP(F) returns (F′, t) where

1. F′ is the result of applying unit propagation on F, and
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2. t is the set of unit clauses found by unit propagation.

Theorem 8. [77]
Let Σ be a CNF. The SLUR algorithm exhibits an O(Σ) time complexity if both calls to UP are applied
simultaneously and one call is immediately abandoned if the other finishes first without falsifying a
clause.

Example 12. Σ = {{x1, x2,¬x4}, {¬x1,¬x3, x4}, {¬x2, x3,¬x5}} is SLUR formula .

Some extensions and variants of the SLUR algorithm

In this section we indicate some possible extensions of the SLUR algorithm; see section 3.6.6 for other
possible extensions.

Remark 14. [77]

1. One can extend the SLUR algorithm by adding a 2SAT algorithm to the unit resolution steps of the
SLUR algorithm.
This extended-SLUR algorithm can solve all 2SAT instances while SLUR algorithm cannot.

2. Also, we can extend the SLUR algorithm by allowing a polynomial number of backtracks, by giving
up if at least one branch of the search tree does not terminate at a leaf where a clause is falsified.
This variant of the SLUR algorithm can solve unsatisfiable CNFs that have short search trees.

3.3.4 Almost-Horn, F−Horn∗, ordered, ordered-renamable and almost ordered formulas

Almost-Horn class

The Almost-Horn class was introduced in[85], its definition class depends on the the so-called Horn basis
notion.
First, we need the definitions of X-Horn CNFs and X-Horn- renamable CNFs. If Σ is a CNF and X ⊆
V(Σ), then L(X) denotes the literals from X.

Definition 114. (X-Horn CNF)[85]
Let Σ be a CNF and let X ⊆ V(Σ). Σ is X-Horn if and only if every clause of Σ contains a positive literal
from L(X) is a Horn clause on X.

Definition 115. (X-Horn-renamable CNF)[85] [86]
Let Σ be a CNF and let X ⊆ V(Σ). Σ is X-Horn-renamable if and only if it can be obtained from a X-Horn
CNF by renaming some of its variables.

Notation 8. [85]
Let Σ be a CNF. Rest(Σ, X) = {C ∈ Σ : C ∩ L(X) = ∅}.

Property 24. [85]
Let Σ be X-Horn-renamable without unit clauses. Σ is satisfiable if and only if Rest(Σ, X) is satisfiable.

Property 25. [85]
Let Σ be a CNF and let X1 ⊆ V(Σ) and X2 ⊆ V(Σ). If Σ is X1-Horn-renamable and X2-Horn-renamable,
then Σ is X1 ∪ X2-Horn-renamable.

Definition 116. (Horn basis)[85]
Let Xi ⊆ V(Σ) (i = 1, 2, . . . , k ) be all the sets such that Σ is Xi-Horn-renamable and B = (X1∪X2∪· · ·∪Xk)
then Σ is B-Horn-renamable. The set B is called the Horn basis of Σ.

Notation 9. [85]
Let Σ be a CNF. The Horn basis of Σ is denoted by Basis(Σ) and Rest(Σ) = Rest(Σ, Basis(Σ)).
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Property 26. [85]
Let Σ be a CNF without unit clauses. Σ is satisfiable if and only if Rest(Σ) is satisfiable.

So, for a CNF Σ without unit clauses (note that we can always remove unit clauses from any CNF
using UP), Basis(Σ) , ∅ ⇒ Rest(Σ) ( Σ, and then Basis(Rest(Σ)) , ∅ ⇒ Rest(Rest(Σ)) ( Rest(Σ) and
so on, hence we can repeat until we get a CNF with empty Horn basis.
So, we have the following definition.

Definition 117. Iterated − Rest(Σ)[85]
Let Σ be a CNF.

Iterated − Rest(Σ) =

{
Σ if Basis(Σ) = ∅

Iterated − Rest(Rest(Σ)) otherwise

Property 27. [85]
Let Σ be a CNF. Σ is satisfiable if and only if Iterated − Rest(Σ) is satisfiable.
So, if Iterated − Rest(Σ) = ∅ then Σ is satisfiable.

Property 28. (almost-Horn class)[85, 87]
Σ is almost-Horn CNF if and only if Iterated − Rest(Σ) = ∅ .

To find Iterated − Rest(Σ), one has to compute Basis(Σ), the authors in [85] have presented a
linear algorithm (O(|Σ|) complexity) to compute Basis(Σ), this is done by using Aspvall’s algorithm
that reduces Horn-renaming problem to 2-SAT (see section 3.3.2), and solves the 2-SAT problem (see
section 3.3.1).

After computing Basis(Σ), one can compute Rest(Σ) in O(|Σ|) complexity and if Basis(Σ) , ∅ then
V(Rest(Σ)) ⊂ V(Σ), so compute Iterated − Rest(Σ) needs at most n steps and so has O(n|Σ|) complexity
time.

F − Horn∗ class

Luquet in his thesis [86] extended the class almost-Horn to the class F − Horn∗ as follows.

Definition 118. F − Horn∗ class [86]
Let Σ be a CNF and let F be a tractable class of SAT, Σ ∈ F − Horn∗ class if and only if Σ has no unit
clause and Iterated − Rest(Σ) ∈ F.

We have the following about the time complexity of recognition and solving algorithms for F−Horn∗

class.

Notes 15. [86]
Let Σ be a CNF with n variables and Let F be a tractable class of SAT such that the recognition and
solving algorithms for F have O( f (Σ)) and O(g(Σ)) time complexity respectively. The recognition and
solving algorithms for F−Horn∗ class have O(n|Σ|+ f (Σ)) and O(|Σ|+g(Σ)) time complexity, respectively.

One can recognize q-Horn class (see definition 128) by using a F − Horn∗ class, more precisely.

Notes 16. [86]
q-Horn is the (2S AT ) − Horn∗ class.

Ordered formulas

Unit propagation does not only solve the satisfiability problem for Horn class (see section 3.3.2), but
it can also be used to generate efficiently the models of any Horn CNF. The authors in [87] generalize
Horn class to classes (ordered formulas, ordered-renamable formulas and also almost ordered formulas
but on condition that the variables are suitably ordered) that preserve these computational properties of
unit propagation. The other classes that benefit from these properties of unit propagation are extended
Horn formulas (see section 3.3.3), simple extended Horn (see section 3.3.3) and balanced formulas (see
section 3).
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Definition 119. (free/linked literal)[87]
Let C ∈ Σ and l ∈ C. l is linked in C (with respect to Σ) if Occ(¬l) = ∅ or ∃t ∈ C (t , l) such that
Occ(¬l) ⊆ Occ(¬t).l is free in C if and only if it is not linked in it.

Definition 120. (ordered formulas)[87]
Σ is ordered if ∀C ∈ Σ, C has at most one positive literal free in it.

The authors in [87] gave a recognition algorithm that, for each literal, computes the set of literals
linked to it and then counts the number of free positive literals of each clause. The time complexity of
this algorithm is O(n|Σ|). For solving algorithm, UP is sufficient for solve the satisfiability problem for
ordered formulas:if the empty clause is not obtained using UP then the given CNF is satisfiable, so the
time complexity of this algorithm is O(|Σ|) .

Theorem 9. [87] Let n be the number of variables in Σ and |Σ| be the number of occurrences of literals
in Σ. Whether Σ is ordered or not can be decided in O(n|Σ|) time and the satisfiability problem of Σ can
be solved in O(|Σ|) time.

Example 13. Σ = {{x1, x2, x3, x4}, {¬x1, x2,¬x3}, {¬x1,¬x2,¬x4, x5}, {¬x1, x3, x4,¬x5}} is an ordered for-
mula.

Example 14. [87]

1. Every Horn CNF is an ordered CNF.

2. If a CNF consists of positive literals then it is an ordered CNF.

3. Σ = {{x1, x2}, {x1, x3}, {x2, x3}} is ordered but not extended Horn.

Definition 121. (Unit derivation, Unit(Σ),Kernel(Σ)) [87]

1. (Unit derivation)
A unit derivation from a CNF Σ is a finite sequence (C1, . . . ,Cp) of clauses such that for every
i,1 ≤ i ≤ p either Ci ∈ Σ or ∃ j, k ∈ {1, . . . , i − 1} and a literal l such that C j = Ci ∪ {¬l} and
Ck = {l}.
A clause C is said to be derivable from Σ by unit resolution if and only if there exists a unit
derivation from Σ,(C1, . . . ,Cp) such that Cp = C.

2. Unit(Σ) = {l ∈ L(V) : {l} derives from Σ by unit resolution}.

3. Kernel(Σ) = Σ|Unit(Σ).

Property 29. [87]

Σ is satisfiable if and only if Unit(Σ) is consistent and Kernel(Σ) is satisfiable.

Remark 15. [87]
Σ is said to satisfy property P∗ if for every set U of unit clauses on V, Σ ∪ U is satisfiable if and only if
Unit(Σ ∪ U) is consistent.

Theorem 10. [87]
If a CNF Σ satisfies property P∗ then the satisfiability problem for Σ can be solved in O(Σ) time.

Property 30. [87]

1. If every clause in Σ contains a negative literal or a literal linked in C then Σ is satisfiable.

2. If Σ is a Horn formula and contains no positive unit clause then Σ is satisfiable.

3. If Σ is ordered and contains no positive unit clause C = {x} such that x is free in C then Σ is
satisfiable.

4. Let U be a set of unit clauses on V. If Σ is ordered then Kernel(Σ ∪ U) is ordered.

5. If Σ is ordered then Σ satisfies P∗.

53



Chapter 3. Tractable Classes and Hierarchies of Tractable Classes

Ordered-renamable formulas

The authors in [87] introduced also the ordered-renamable class which also satisfies property P∗ and so
the satisfiability problem for Σ can be solved in O(Σ) time, too.

Definition 122. (ordered-renamable formula)[87]
Σ is ordered-renamable if it can be transformed into an ordered formula by renaming some variables.

Property 31. [87]

1. If Σ′ is obtained from a formula Σ by renaming some variables and Σ satisfies P∗ then Σ′ satisfies
P∗.

2. The satisfiability problem for ordered-renamable CNF Σ can be solved in O(|Σ|) time and the
recognition algorithm for ordered-renamable CNF Σ can be solved in time O(n|Σ|).

Almost ordered formulas

The third class that was introduced in [87] is the so-called almost ordered class. It can be recognized in
polynomial time but it does not satisfy Property P∗.
The definition of almost ordered formulas is based on the notion of ordered basis, which generalizes the
Horn basis.

Definition 123. (X-ordered formula, X-ordered-renamable formula)[87]
Let X be a subset of variables of a CNF Σ. Σ is X-ordered if for every clause C in Σ and every positive
literal x in X, if x ∈ C and x is free in C then C ∈ L(X) and x is the only positive literal free in C. Σ

is X-ordered-renamable if and only if we can transform Σ into an X-ordered formula by renaming some
variables.

X-ordered formula, X-ordered-renamable formula are generalizations of ordered formula and
ordered-renamable formula, respectively.

Notes 17. [87]
Σ is ordered if and only if Σ is V-ordered whereas Σ is ordered-renamable if and only if Σ is V-ordered-
renamable.

Property 32. [87]
Let Σ be a CNF.

1. Let X ⊆ V and let Rest(Σ, X) = {C ∈ Σ : C ∩ L(X) = ∅} and assume that Σ is X-ordered-renamable
without unit clauses. We have that Σ is satisfiable if and only if Rest(Σ, X) is satisfiable.

2. Let X1 ⊆ V and X2 ⊆ V. If Σ is X1-ordered-renamable and X2-ordered-renamable then Σ is
(X1 ∪ X2)-ordered-renamable.

Definition 124. (ordered basis) [87]
Let X1, . . . , Xk be all the subsets of V such that Σ is Xi-ordered-renamable and B = X1 ∪ · · · ∪ Xk.
From Property 32 Σ is B-ordered-renamable. The set B is called the ordered basis of Σ and denoted by
OBasis(Σ).

Property 33. [87]

1. Every Horn basis (X-Horn formula, X-Horn-renamable formula) is ordered basis (X-ordered for-
mula, X-ordered-renamable formula, respectively).

2. Let ORest(Σ) = Rest(Σ,OBasis(Σ)). If Σ contains no unit clause, then Σ is satisfiable if and only
if ORest(Σ) is satisfiable. So, if Σ contains no unit clause and ORest(Σ) = ∅ then Σ is satisfiable.

3. The ordered basis of Σ can be computed in O(n|Σ|) time.
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Definition 125. Iterated − ORest(Σ)[87]
Let Σ be a CNF.

Iterated − ORest(Σ) =

{
Σ if OBasis(Σ) = ∅

Iterated − ORest(ORest(Σ)) otherwise

Definition 126. (almost ordered formula)[87]
Σ is almost ordered if and only if Iterated − ORest(Σ) = ∅.

Notes 18. [87]
If Σ is almost ordered and contains no unit clauses then Σ is satisfiable.

Definition 127. (suitable permutation)[87]
Let Σ be an almost ordered CNF. There exist X1, . . . , Xk, Xi ⊆ V (1 ≤ i ≤ k), and Σ1, . . . ,Σk, Σi ⊆ Σ

(1 ≤ i ≤ k), such that Σ1 = Σ,Xi = OBasis(Σi) (1 ≤ i ≤ k),Σi+1 = ORest(Σi) (1 ≤ i ≤ k − 1) and Σk = ∅.
Let W = V \ (X1 ∪ · · · ∪ Xk). A permutation (x1, . . . , xn) of the variables of Σ is suitable if and only if for
every j (1 ≤ j ≤ n), {x1, . . . , x j} ⊆ W or there exists i such that {x1, . . . , x j} = W∪Xk∪Xk−1∪· · ·∪Xi+1∪X
with X ⊆ Xi.

Theorem 11. [87]
One can decide whether Σ is almost ordered, and build (if Σ is almost ordered) a suitable permutation,
in O(n2|Σ|) time.

3.3.5 q-Horn, Matched, Generalized Matched and LinAut formulas

q-Horn formulas

Definition 128. ( q-Horn class)
Let Σ be a CNF that has m clauses and n variables. Let |Ci| be the length of the clause Ci (i.e., the
number of literals occurring in it) and let w be the m-vector such that its components are |Ci| and let x
be a real n-vector and 1 be the vector of 1’s (the dimension of this vector is recognized from the context).
Consider the system of real inequalities
MΣ(x) ≤ 2Z1 − w, −1 ≤ x ≤ 1.
The CNF is called q-Horn if and only if this system is satisfied for Z = 1. [79, 82, 88, 89].

Remark 16. (special cases of q-Horn) [79, 82, 88, 89].
If the inequalities of the system is satisfied by Z = 1 and all the components of x are 1 then the q-Horn
CNF is Horn CNF, and if the inequalities of the system is satisfied by Z = 1 and all the components of x
are ±1 then the q-Horn CNF is renamable Horn CNF.

Theorem 12. [79, 82, 88, 89].
Let c be a fixed positive real number, the CNFs that satisfy MΣ(x) ≤ 2Z1−w, −1 ≤ x ≤ 1 with Z = 1+

clogn
n

can be solved in polynomial time. Let β be a real number, β < 1, the CNFs that satisfy MΣ(x) ≤ 2Z1−w,
−1 ≤ x ≤ 1 with Z = 1 + 1

nβ is NP-complete.

Example 15. Σ = {{x4,¬x5,¬x6}, {¬x4,¬x5,¬x6}, {¬x6, x7}, {¬x4,¬x5, x1, x2}, {¬x4,¬x6,¬x2, x3},
{¬x5,¬x7, x2, x3}, {¬x2,¬x3}, {x2,¬x3}, {x1, x2}} is a q-Horn instance.

Notes 19. [89] Σ is q-Horn if and only if the variables of Σ can be decomposed uniquely (up to renaming
of Σ) into two sets H and Q, H ∩ Q = ∅ such that no clause of Σ has:

1. More than two variables of Q.

2. More than one positive literal of H.

3. One positive literal of H and a literal of Q.

Notes 20. In example 15, Q = {x1, x2, x3} and H = {x4, x5, x6, x7}.
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Notes 21. [79, 82, 88, 89]
For a CNF Σ, after determining the two sets H and Q that satisfy the above three conditions, which can
be done in O|(Σ|), (and hence recognition that Σ belongs to q-Horn),the decision algorithm consists in
assigning the FALSE value to variables of H and in solving the resulting 2SAT by any linear algorithm
for 2SAT class, see section 3.3.1. Hence both the recognition algorithm and the decision algorithm for
q-Horn class run in linear time.

Maximum monotone decomposition characterization of the q-Horn class

q-Horn class can be characterized by using maximum monotone decomposition of matrices [77]

Definition 129. (Maximum monotone decomposition of matrices) [77]
Let MΣ be the (0,±1)-clause-variable matrix of the CNF Σ. In the monotone decomposition of MΣ the
columns are multiplied by −1 and the rows and columns are partitioned into submatrices(

A1 E
D A2

)
where

1. Each row in the submatrix A1 has at most one +1.

2. The submatrix D contains only −1 or 0 entries.

3. There is no restrictions on the submatrix A2.

4. The submatrix E has 0 entries only.

The decomposition is a maximum monotone decomposition if and only if A1 is the largest possible over
columns.

Property 34. (q-Horn formula as maximum monotone decomposition)[77]
The CNF represented by MΣ is q-Horn if in the maximum monotone decomposition of MΣ, A2 has no
more than two nonzero entries per row.

Property 35. [77, 90]
One can find in linear time a maximum monotone decomposition for a matrix associated with a q-Horn
formula, and after putting q-Horn formula in this form, it can be solved in linear time.

We can use a similar matrix decomposition for the polynomial class in Theorem 12

Remark 17. [77]
The MΣ matrix for the polynomial class in Theorem 12, after multiplying by −1, can be partitioned as(

A1 E B1

D A2 B2

)
where A1, E,D, A2 as for q-Horn CNFs and the number of columns of B1 and B2 is less

than or equal O(ln(n)).

Also we get the following.

Property 36. [77]
The satisfiability problem for the CNFs in Theorem 12 can be solved in polynomial time by solving the
q-Horn system that is obtained by substituting each of 2O(ln(n)) partial truth assignments to the variables
of B1 and B2.

Matched formulas

Definition 130. (Matched formulas)[82]
Let Σ be a CNF and UBG(Σ) is the undirected bipartite graph with vertex sets C(Σ) and V(Σ) where
(a,C) ∈ UBG(Σ) if and only if a ∈ C or ¬a ∈ C that is MΣ(i, j) , 0.
A total matching for the set C(Σ) is a set M ⊂ EDG(UBG(Σ)) such that if C ∈ C(Σ),C is incident upon
exactly one edge of M and if a ∈ V(Σ), a is incident upon at most one edge of M.
If UBG(Σ) has a total matching then Σ is called a matched CNF.
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Finding a total matching for an undirected bipartite graph (actually for any undirected graph) can
be done in polynomial time. A total matching for UBG(Σ) (if one exists) can be found by using an
augmenting path algorithm.
The following lemma shows that if a total matching for UBG(Σ) exists then Σ is satisfiable. Because if
M is a total matching for UBG(Σ) then the edges of this matching give a satisfying partial assignment
for Σ ;∀edge(v,C) ∈ M, if ¬v ∈ C then assign the value FALS E to v else assign the value TRUE [82].

Property 37. [82]. Let Σ be a CNF. If there is a total matching for UBG(Σ) then Σ is satisfiable.

Hence, a recognition algorithm for matched formulas Σ can run in polynomial time, by checking if
UBG(Σ) has a total matching. The same algorithm is a decision algorithm for this class because if the
total matching exists for UBG(Σ) then Σ is satisfiable.

Example 16. Σ = {{x1, x2,¬x4}, {¬x1,¬x3, x4}, {¬x2, x3,¬x5}} is a matched formula.

Generalized matched formulas

Szeider [91] generalized the class of matched formulas by the so-called biclique subgraph.

Definition 131. (Biclique) [77, 91]
Let Σ be a CNF and UBG(Σ) is the undirected bipartite graph with vertex sets C(Σ) and V(Σ) where
(a,C) ∈ UBG(Σ) if and only if a ∈ C or ¬a ∈ C and let C1 ⊆ C(Σ) and V1 ⊆ V(Σ). A biclique is the
complete (i.e. for each v ∈ V1 and C ∈ C1 there is e = (v,C) ∈ E) subgraph G(C1,V1, E) of UBG(Σ)
induced by C1 and V1.

If all the bicliques of UBG(Σ) are single edges then Σ is a matched formula.

Theorem 13. [91]
Let Σ be a CNF with n variables and m clauses. If UBG(Σ) is a biclique and m < 2n then Σ is satisfiable.

Example 17. [91]
The CNF Σ = {{x1, x2}, {x1,¬x2}, {¬x1, x2}} is satisfiable according to Theorem 13 but it is not matched.

We can check the satisfiability of a CNF by covering all clauses of UBG(Σ) by several bicliques
under the condition that every variable belongs to at most one biclique.

Theorem 14. [91]
If there is a collection C = {X1, . . . , Xk} of sets of vertices of UBG(Σ) such that

1. Every clause of Σ belongs to some Xi, 1 ≤ i ≤ k.

2. Every variable of Σ belongs to at most one Xi, 1 ≤ i ≤ k.

3. Xi induces in UBG(Σ) a biclique on ni variables and mi < 2ni clauses, 1 ≤ i ≤ k.

then Σ is satisfiable.

Definition 132. (biclique satisfiable(generalized matched formulas)) [77, 91]
A CNF formula is biclique satisfiable (generalized matched formulas) if and only if it satisfies the condi-
tions in theorem 14.

Unfortunately we have the following result for recognizing a generalized matched formula.

Notes 22. [77]
The problem of recognition a generalized matched formula is NP-complete, even for 3-CNF formulas.

We can choose the collection C = {X1, . . . , Xk} in Theorem 14 such that all elements of C are mutually
disjoint.
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Corollary 3. [91]
If there is a mutually disjoint collection C = {X1, . . . , Xk} of sets of vertices of UBG(Σ) such that

1. Every clause of Σ belongs to some Xi, 1 ≤ i ≤ k.

2. Every variable of Σ belongs to at most one Xi, 1 ≤ i ≤ k.

3. Xi induces in UBG(Σ) a biclique on ni variables and mi < 2ni clauses, 1 ≤ i ≤ k.

then Σ is satisfiable.

If we restrict the size of bicliques by some positive integer l ≥ 1 then we get the following special
case of biclique satisfiable.

Definition 133. (l-biclique satisfiable) [91]
A CNF Σ is l-biclique satisfiable if and only if there is a collection C = {X1, . . . , Xk} of sets of vertices of
UBG(Σ) such that

1. Every clause of Σ belongs to some Xi, 1 ≤ i ≤ k.

2. Every variable of Σ belongs to at most one Xi, 1 ≤ i ≤ k.

3. Xi induces in UBG(Σ) a biclique on ni variables and mi < 2ni clauses, 1 ≤ i ≤ k.

4. Each Xi contains at most l variables.

The recognition algorithm of 1-biclique satisfiable has polynomial time complexity but for all l,l ≥ 2
it is NP-complete.

Property 38. (The recognition algorithm of l-biclique satisfiable) [91]

1. A CNF formula is matched if and only if it is 1-biclique satisfiable. Hence 1-biclique satisfiable
CNF formulas can be recognized in polynomial time.

2. For any l ≥ 2, recognition of l-biclique satisfiable 3- CNF formulas is NP-complete.

Both matched formulas and biclique satisfiable (generalized matched formulas) are special cases of
Var-satisfiable CNF formulas.

Definition 134. (Var-satisfiable formulas)[91]
A CNF formula Σ is var-satisfiable if and only if every CNF formula Σ′ such that UBG(Σ′) = UBG(Σ) is
satisfiable.

Every generalized matched formula (and hence every matched formula) is var-satisfiable formula but
the converse is not true.

Property 39. [91]

1. A CNF is var-satisfiable if and only if it is satisfiable and remains satisfiable under arbitrary
replacement of literals by their complements.

2. Since polarity of literals is not used to form the incidence graphs, every matched formula and
every generalized matched formula is var-satisfiable formula.

3. There are var-satisfiable CNF formulas that are not biclique satisfiable: Σ =

{{x1, x2, x3}, {¬x1, x2, x3}, {¬x1, x2,¬x3}, {x1,¬x2}, {¬x1,¬x2}} is a var-satisfiable CNF but is
not biclique satisfiable.
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LinAut formulas

Kullmann [92] introduced the Linear Autarky and defined the LinAut class. To present the LinAut class,
we need the autarky definition

Definition 135. (autarky)[92, 25, 93]
Let τ be a partial assignment (represented by the set of literals that it satisfied, see remark 2) and Σ be a
CNF (represented by a family of sets where its clauses are represented as sets of their literals).
τ is an autarky for Σ if and only if ∀C ∈ Σ,V(τ) ∩ V(C) , ∅ ⇒ τ(C) = TRUE.

Example 18. [94]
A pure literal is an autarky.

As a special case we have the linear autarky.

Definition 136. (linear autarky)[92, 94]
A linear autarky is a real n-vector x, x , 0 which satisfies the following system of inequalities.
MΣ(x) ≥ 0.

Example 19. [94]
A pure literal is a linear autarky.

Property 40. [92, 94]

1. Every linear autarky induces an autarky.

2. We can decompose (we call this decomposition DEC) a given CNF into two parts using the autarky
induced by the linear autarky.

(a) The first part is satisfied by the autarky.

(b) The second part contains just the variables that undefined in the autarky.

(c) The second part is satisfiable if and only if the given CNF is satisfiable.

(d) If we recursively use the decomposition DEC then we finally get a CNF that is semanti-
cally equivalent to the given CNF and this resulting CNF has no linear autarky (i.e., linear
autarky-free subformula of the given CNF formula).

(e) We can use linear programming to find the linear autarkies in polynomial time.

(f) The satisfiable 2SAT is solved by using the decomposition DEC; this means two things:

i. A satisfying truth assignment is an autarky induced by a linear autarky.

ii. If the the resulting linear autarky-free subformula is non empty then the given 2SAT is
unsatisfiable.

We now define the LinAut class.
First, we define the class LinAut of CNFs with at least three literals per clause [82]
(LinAut of CNFs with at least three literals per clause)
Let us denote the LinAut class of CNFs with at least three literals per clause by LinAut≥3. This definition
is easier than the general definition since we do not need to deal with the 2SAT subformulas.
Note that a satisfiable CNF belongs to LinAut≥3 if and only if we get the empty CNF using the decom-
position DEC.

Definition 137. (LinAut≥3 formulas)[82]
Let Σ be a CNF with at least three literals per clause. The LinAut≥3 class is defined inductively as
follows.

1. The empty CNF is in LinAut≥3.
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2. Suppose Σ has a linear autarky x.
linS at(Σ, x) = {C : C is a clause that has a literal v j (or ¬v j) ∈ C that corresponds to x j ∈ x, x j ,

0}.
let Σ′ = Σ \ (linS at(Σ, x)), if Σ′ ∈ LinAut≥3 then Σ ∈ LinAut≥3.
We can construct a partial assignment τ that satisfies linS at(Σ, x) without affecting Σ′, i.e., Σ is
satisfiable if and only if Σ′ is satisfiable. The partial assignment τ is constructed as follows.

(a) Let v j take the value TRUE if x j > 0 and the value FALSE if x j < 0 (if the clause Ci ∈

linS at(Σ, x) then at least one of its literals takes the value TRUE since MΣ(i, j)(x j) takes at
least one positive value form all the nonzero values).

(b) If Ci ∈ Σ′ then we do not assign a value by τ to all literals of Ci.

(The general definition of LinAut formulas)
Here we need to take into account the 2SAT subformulas of the given CNF formula, but since the sat-
isfiable 2SAT is completely solved by using the decomposition DEC, we can define the general LinAut
class as follows.

Definition 138. (LinAut class) [94]
A CNF belongs to LinAut class if and only if by using the decomposition DEC

1. either we get the empty set,

2. or we get a linear autarky-free 2SAT subformula.

Notes 23. [94]
In definition 138 a CNF belongs to LinAut class is

1. satisfiable if we get the empty set by using the the decomposition DEC

2. unsatisfiable if we get a linear autarky-free 2SAT subformula by using the decomposition DEC.

By using the complexity index, some properties can be derived on linear autarky-free formulas and
on the relationship between q-Horn class (see definition 128) and LinAut class.

Definition 139. (complexity index) [94]
The complexity index of a CNF with n variables is the solution to the linear system

min Z
MΣ(x) ≥ L − 2Z1
x ∈ [−1, 1]n

where L is a vector that has the length of clause i in its i-th entry.

Property 41. [94]

• q-Horn CNF without unit-clause is in the class LinAut.

• In a linear autarky-free formulas with complexity index Z we have;

1. either for some clause i (with length Li), Z > 1
2 Li,

2. or all clauses have the same length L = 2Z.

• A kSAT linear autarky-free formula has complexity index Z = 1
2 k.

• Let k be the length of the shortest clause of a CNF Σ with complexity index Z < 1
2 k: Σ is satisfiable.

Example 20. Σ = {{x1, x2, x3}, {¬x1,¬x2,¬x3}} is a LinAut formula.
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3.3.6 PURL algorithm

The authors in [95] have presented an algorithm (called PURL) that could solve the unsatisfiable in-
stances that belong to SLUR or LinAut classes.

Definition 140. T1(C, l) [96, 95]
Let Σ be a CNF and C ∈ Σ be a clause and l ∈ C.
T1(C, l) is the set of the truth assignments such that if τ ∈ T1(C, l), τ(l) = TRUE and τ(t) = FALS E
∀t(, l) ∈ C.

Theorem 15. [96] Let Σ be a satisfiable CNF. There is a clause C ∈ Σ and a literal l ∈ C and a truth
assignment τ ∈ T1(C, l) such that τ satisfies Σ, i.e., τ(Σ) = 1.

.

Definition 141. (Removable literal) [95].
A literal l ∈ C is removable if and only if τ(Σ) = 0 ∀τ ∈ T1(C, l).

Theorem 16. [95]. If Σ is a CNF and C ∈ Σ is a clause and l ∈ C is a removable literal then (Σ \ C) ∪
(C \ {l}) and Σ are logically equivalent (Σ \C) ∪ (C \ {l}) is satisfiable if and only if Σ is satisfiable).

Let Flip(C, l) = (C \ {l}) ∪ {¬l} and Flip(C, l) = {¬l : l ∈ Flip(C, l)} and let X = {l1, . . . , lk} be a
consistent subset of literals of Σ, and let Σ ∪ U(X) denote the set Σ ∪ {l1} ∪ . . . ,∪{lk}.

Property 42. [95] If Σ is a CNF and C ∈ Σ is a clause then l ∈ C is a removable literal if and only if
Σ � Flip(C, l).

Definition 142. (p-removable literal)
Let Σ be a CNF and C ∈ Σ be a clause and l ∈ C. l is p-removable if and only if UP(Σ∪U(Flip(C, l)) = ∅,
i.e., Σ �∗ Flip(C, l).

Since Σ �∗ Flip(C, l) implies Σ � Flip(C, l), so if l is p-removable then l is removable and one can
use the logically equivalence between (Σ \ C) ∪ (C \ {l}) and Σ to remove all the p-removable literals
from Σ and get a CNF without any p-removable literals (or reach the null clause).
The authors in [95] present this algorithm (called PURL). The running time of PURL belongs to O(|Σ|3).

The authors in [95] show that if an unsatisfiable CNF Σ belongs to the SLUR or LinAut classes (and
hence to any of the classes (2SAT, Horn,reverse-Horn, CC-balanced,renamable Horn, extended Horn,
q-Horn, Matched ones) then Σ can be solved using the PURL algorithm.

3.4 Some other satisfiable and polynomially solvable subclasses of SAT

In this section we introduce briefly some other satisfiable and polynomially solvable subclasses of SAT

3.4.1 Nested, extended nested formulas

In this section we present two tractable classes (nested and extended nested) that do not depend on the
UP-technique.

Nested formulas

Let X be a linear ordered (by the ordered relation <, see definition 93) finite alphabet.
We associate the elements of X with the variables and literals of a CNF Σ as follows.

1. v ∈ X if and only if v ∈ V(Σ).
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2. The positive literals in Σ are the elements of X and the negative literals in Σ are the others ones.

Notes 24. [97].

1. The linear ordering of X can be extended to a linear preordering of all its literals by disregarding
the signs.

2. A clause over X is a set of literals on distinct variables.

Definition 143. (the straddles of two clauses)[97]
A clause C straddles clause C′ if and only if there are literals a, b ∈ C and c ∈ C′ such that
a < c < b.

Definition 144. (the overlap of two clauses)[97]
Two clauses overlap if they straddle each other.

Definition 145. (nested formulas)[97]
A set of clauses in which no two overlap is called nested.

Nested formulas can be solved in linear time, basically this algorithm replace the clauses of the given
CNF by a clauses of length two and check this replacement by a special form of dynamic 2SAT[97].

Example 21. Σ = {{x1, x2}, {¬x1, x4}, {¬x1,¬x4}, {x1,¬x2, x3}} is nested formula.

Extended nested formulas

Knuth [97] noted that the 2SAT formula arising from his algorithm, which works by replacing each clause
by 2-length clause, is not completely general. So he suggested that there is larger tractable subclass
of SAT that contains nested class, the authors in [98] found this larger class that extends the nested
one. The authors in [98] defined the class of extended nested satisfiability problems by associating two
hypergraphs to the CNF Σ.

1. The first hypergraph H = (V(H), E(H)) is as follows:

• The vertices V(H) = {v1, v2, . . . , vn} of H correspond to the variables {x1, x2, . . . , xn} of Σ.

• Each clause Ci of Σ corresponds to an edge Ei ∈ E(H) of H where the vertices of Ei ∈ E(H)
correspond to the variables of Ci.

Definition 146. (large edge) [98]
An edge E is large if and only if it has more than two vertices.

2. The second hypergraph Ĥ is as follows.

• (a) Let W = {v ∈ V(H) : ∃ a clause C, |C| ≤ 2, x ∈ V(C), where x corresponds to v, and
there is no clause C′, |C′| ≥ 3, x ∈ V(C′)} ;

(b) Let HW = (W, EW) be the subhypergraph induced by W.

• Let Wi, i = 1, . . . .w be the connected components of HW and Ni be its set of neighbors [i.e.,
the vertices vk ∈ V \W and vl ∈ Wi such that {vk, vl} ∈ H].
Then Ĥ = (V(Ĥ), E(Ĥ)) is constructed from H as follows.

(a) By setting V(Ĥ) to V(H) and E(Ĥ) to E(H).
(b) By deleting from E(Ĥ) all unary or binary edges contained in a large edge.
(c) By adding to E(Ĥ) large edges Ei = (Wi ∪Ni) for each connected component Wi of HW .

Definition 147. (erasure operation on the hypergraph Ĥ)[98]
The erasure operation on the hypergraph Ĥ is done by either

1. finding an edge E of Ĥ with at most one vertex belonging also to other edges,
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2. removing that edge from Ĥ.

or

1. finding a large edge E of Ĥ with exactly two vertices,vk and vl, which belong also to other edges,

2. removing that edge E from Ĥ,

3. adding the edge {vk, vl} to Ĥ if no edge of Ĥ contains both vk and vl.

Definition 148. (erasable hypergraph Ĥ) [98]
The hypergraph Ĥ is erasable if and only if the recursive application of erasure operation leads to remove
all large edges.

Definition 149. (extended nested class) [98]
A CNF Σ defines an extended nested satisfiability problem if and only if the corresponding hypergraph
Ĥ is erasable.

Then, the authors in [98] have introduced a linear time algorithm for solving and recognizing ex-
tended nested satisfiability instances: it consists in constructing the hypergraphs H and Ĥ for the given
CNF Σ and in checking if Ĥ is empty or has no large edges; if the answer is positive then the algorithm
solves the satisfiability for the 2SAT instance. Otherwise, it goes on by using an erasure operation to Ĥ
to check if it is erasable or not. If Ĥ is erasable and the chosen edge is E then

1. Let V be the set of corresponding variables to its vertices.

2. Let Σv be the CNF that results from Σ by deleting all clauses that contain variables not in V .

3. Let T be the set of vertices of E that belong to other edges of Ĥ.

We have three cases of T : T is empty or T has one vertex or T has two vertices, in all three cases the
satisfiability of Σ depends on the satisfiability of subproblems, and in the case where Σ is satisfiable, a
model of it is constructed from the models of the subproblems (see algorithm ENSAT in [98] for more
details).

Example 22. [98]
Σ = {{x1,¬x2}, {x2, x6}, {x1,¬x7}, {¬x4,¬x6}, {¬x6, x11}, {¬x7, x10}, {x10,¬x11}, {x7,¬x9},

{x9,¬x10}, {x2,¬x3}, {x7,¬x8}, {x3, x5}, {¬x5, x8}, {¬x1,¬x2, x4, x6,¬x7}, {x6, x7, x9, x10, x11}} is an ex-
tended nested CNF.

Property 43. [98]

1. Algorithm ENSAT recognizes and solves constructively extended nested satisfiability problems in
linear time.

2. Nested satisfiability is a particular case of extended nested satisfiability.

3.4.2 Affine formulas

Definition 150. The affine class is a subclass of SAT that can be written as a system of linear equations
where the coefficients and the solutions have to belong to {0, 1}.

Example 23. (For the symbol ⊕ see remark 1).
Let {x1, x2, x3, x4, x5, x6} be boolean variables. The following example is a system of affine formulas
x1 ⊕ x2 ⊕ x4 = 0
x2 ⊕ x5 = 1
x3 ⊕ x6 = 0
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The instances of affine class can be solved in polynomial time [61]. For example a satisfying assign-
ment can be constructed for an affine instance by a variant of Gaussian elimination [99].

Notes 25. 1. The solutions of the equation x1 ⊕ x2 ⊕ x4 = 0 are exactly the same solutions of SAT
instance (¬x1 ∨ ¬x2 ∨ ¬x4) ∧ (x1 ∨ x2 ∨ ¬x4) ∧ (x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x4).

2. The solutions of the equation x2 ⊕ x5 = 1 are exactly the same solutions of SAT instance (¬x2 ∨

¬x5) ∧ (x2 ∨ x5).

3. The solutions of the equation x3 ⊕ x6 = 0 are exactly the same solutions of SAT instance (¬x3 ∨

x6) ∧ (x3 ∨ ¬x6).

4. So the solutions of the system of equations in example 23 are exactly the same solutions of SAT
instance (¬x1 ∨¬x2 ∨¬x4)∧ (x1 ∨ x2 ∨¬x4)∧ (x1 ∨¬x2 ∨ x4)∧ (¬x1 ∨ x2 ∨ x4)∧ (¬x2 ∨¬x5)∧
(x2 ∨ x5) ∧ (¬x3 ∨ x6) ∧ (x3 ∨ ¬x6).

3.4.3 Doubly balanced 3SAT formulas and its extension to SAT formulas using balanced
polynomial representation

The definition of doubly balanced 3SAT formulas [100] is based on the signs (negative or positive) of
occurrences of the variables of the formula.

Definition 151. (doubly balanced 3SAT formulas) [100]
Let Σ be 3SAT CNF with n variables and m clauses and let MΣ be its clause-variable matrix and denote
its (i, j) elements by ai, j.
Σ is doubly balanced 3SAT formulas if and only if

1. for each variable p j, the number of negative occurrences of this variable equals the number of
positive occurrences of it, i.e.
m∑

i=1
ai, j = 0 for all j = 1, . . . , n.

2. For any two variables p j and pk, the number of clauses where both appear simultaneously with
the same sign (i.e., both negative or both positive) is equal to the number of clauses in which both
appear simultaneously with opposite signs (i.e., one appears negatively and the other positively),
i.e.,
m∑

i=1
ai, jai,k = 0 for all j, k = 1, . . . , n, j , k.

Property 44. (doubly balanced 3SAT class is tractable) [100]
A doubly balanced formula can be solved in polynomial time.

The authors in [100] generalized the notion of doubly balanced 3SAT class to any instances of SAT
using a polynomial representation.

Definition 152. (balanced polynomial representation and positive polynomial representation) [100]

Let cI = (−1)|I|
m∑

i=1

∏
j∈I

ai, j where I ⊆ {1, . . . , n} and let (PR) denote the problem.

Find x = (x1, . . . xn) ∈ {−1, 1}n such that P(x) = m +
∑

I⊆{1,...,n}
cI

∏
i∈I

xi = 0. ...(PR)

1. The polynomial function P(x) is called balanced if
∑

I⊆{1,...,n}
|cI | = m.

2. The polynomial function P(x) is called positive if
∑

I⊆{1,...,n}
|cI | < m.

Given the polynomial representation (PR), we get the following [100].
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Property 45. Given a CNF Σ and its polynomial representation (PR).

1. If Σ has a positive polynomial representation then it is unsatisfiable.

2. If Σ has a balanced polynomial representation then it can be solved in O(mn.min{m, n}) time.

3. If
∑

I⊆{1,...,n}
|cI | = m + 2z, then Σ can be solved in O(

(
m+2z

z

)
mn.min{m, n}) time.

3.4.4 Exact linear and exact linearly-based formulas

A CNF formula is linear [101] if each pair of clauses have at most one shared variable; the authors in
[101] proved that linear SAT and linear kSAT are NP-complete but there is a satisfiable subclass (exact
linear formulas)[101] and polynomial subclass (exact linearly-based formulas) [102] of linear SAT.

Definition 153. [101, 102]
A CNF Σ without a complementary pair of unit clauses is

1. linear if and only if for all C1,C2 ∈ Σ, C1 , C2 we have |V(C1) ∩ V(C2)| ≤ 1;

2. exact linear if and only if for all C1,C2 ∈ Σ, C1 , C2 we have |V(C1) ∩ V(C2)| = 1;

3. exact linearly-based if and only if for all C1,C2 ∈ Σ, we have |V(C1) ∩ V(C2)| = 1 or V(C1) =

V(C2).

Property 46. [101, 102]
The satisfiability problem of

1. linear formulas is NP-complete;

2. exact linear formulas is always satisfiable;

3. exact linearly-based formulas is polynomial time.

Property 47. [103]
Let m(k) be the largest integer m such that any linear k-CNF formula with less than or equal m clauses
is satisfiable then 4k

4e2k3 ≤ m(k) ≤ ln(2)k44k.

3.4.5 Formulas with many clauses

The author in [104] proved three results about CNFs with many clauses, using the following notation.

Notation 10. [104]
Let Σ be k-SAT with m clauses and n variables where each clause contains k different variables and
n ≥ k ≥ 1. Let k − S AT (> m0) denote the k − S AT problem of instances with m > m0(n) clauses.

Property 48. [104]

1. Every instance of the k − S AT (>
(
n
k

)
(2k − 1)) problem is unsatisfiable and this can be decided in

polynomial time.

2. Every instance of the k−S AT (>
(
n
k

)
(2k−1− k

n )) problem has at most one satisfying truth assignment
and this can be decided in polynomial time and a satisfying truth assignment can be determined in
polynomial time provided that there exists one.

3. For each k ≥ 3 and each integer l ≥ 4, the k − S AT (>
(
n
k

)
(2k − 1 − 4

l )) problem is NP-complete for
n ≥ lk2.
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3.5 Minimally unsatisfiable formulas and maximum deficiency

An unsatisfiable CNF is minimally unsatisfiable if the result of removing any clause is a satisfiable CNF.
To show how to solve and recognize a minimally unsatisfiable CNF, the definitions of deficiency and
maximum deficiency are required.

Definition 154. (deficiency of a CNF) [105, 77]
The deficiency of a CNF is the difference between the number of its clauses and the number of its vari-
ables.

Every subformula of a CNF has its own deficiency which is the difference between the number of its
clauses and the number of its variables. So we have the following definition.

Definition 155. (maximum deficiency of a CNF) [105, 77]
The maximum deficiency of a CNF is the maximum of the deficiencies of its subformulas.

Lemma 1. (maximum deficiency of a minimally unsatisfiable CNF) [105, 77]

1. If Σ is a minimally unsatisfiable CNF with n variables then the number of clauses of Σ is at least
n + 1.

2. The maximum deficiency of a minimally unsatisfiable CNF is its deficiency that is the difference
between the number of its clauses and the number of its variables.

The maximum deficiency of a formula can be determined in polynomial time and the satisfiability of
a CNF with a fixed maximum deficiency can be determined in polynomial time.

Theorem 17. [105, 77]

1. Let Σ be a CNF formula with n variables and maximum deficiency δ. The satisfiability of Σ can be
determined in O(2δn3) time.

2. Let Σ be a minimally unsatisfiable CNF with n variables and deficiency δ. Then Σ can be recog-
nized as a minimally unsatisfiable CNF in O(2δn4) time.

3.6 Hierarchies of Tractable Classes

In this section we focus on the hierarchies of tractable classes. The hierarchies of tractable classes consist
of strata such that each stratum contains a tractable subclass of SAT and the classes in the hierarchy is
defined recursively where the definition of the class in higher stratum depends on the definition of the
class in lower stratum. There are many hierarchies of tractable classes in the literature, for example:

1. the hierarchy of Gallo and Scutella [1],

2. the hierarchy of Dalal and Etherington [2],

3. the two hierarchies of Cepek and Kucera [4],

4. the hierarchy of Pretolani [3],

5. the hierarchy of Kullmann [5],

6. the hierarchies that generalize SLUR class, S LUR(i) [84],S LUR∗(i) [106] and S LURi [107, 108].

7. the hierarchy of Andrei et al. [109].

In this section we present some of these hierarchies briefly.
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3.6.1 The hierarchy of Gallo and Scutella [1]

Yamasaki and Doshita [110] generalized the Horn class into a class that they called S 0, as follows

Definition 156. A CNF Σ = {C1,C2, . . . ,Cn} ∈ S 0 if and only if

1. Ci = Pi ∪ Hi, i = 1, 2, . . . , n where Hi is a Horn clause and Pi is a set of positive literals.

2. Pi ⊆ Pi+1, i = 1, 2, . . . , n − 1.

We will call S 0 as S 0 or Γ1 or Generalized Horn or GHorn.
They have presented an O(|Σ|2) algorithm for recognition S 0 and O(|Σ|3) algorithm to check the
satisfiability of a CNF in S 0 (Arvind and Biswas [111] improved this result to O(|Σ|2). Note that
Horn⊆ S 0.

Gallo and Scutella [1] have generalized the Horn and S 0 classes and presented the following hierar-
chy .

Definition 157. [1, 112].
Let Γ0 := HORN, a CNF Σ = {C1,C2, . . . ,Cn} ∈ Γk, where k > 0 if and only if

1. Ci = Pi ∪ Hi, i = 1, 2, . . . , n for some Hi where Pi is a set of positive literals.

2. Pi ⊆ Pi+1, i = 1, 2, . . . , n − 1.

3. {C1 \ P1,C2 \ P2, . . . ,Cn \ Pn} ∈ Γk−1.

Note that Γ1 = S 0.
Gallo and Scutella have presented two algorithms: one that recognizes instances in Γk in O((|Σ|×nk) time
and one for solving the instances in Γk in O((|Σ|×nk) time, too.
Here, we introduce the hierarchy of Gallo and Scutella and adopt the same terminologies and definitions
that these authors used in their paper (see [112] for equivalent definitions and terminologies).

Definition 158. [1]
Let S = {X1, X2, . . . , Xn} be a family of sets Xi such that Xi ⊆ I where I is a set with |I|= n.

1. Define the set S J as S J = S \ {X ∈ S : J ⊆ X}.

2. Define the operation Θ as S ΘJ = {X \ J : X ∈ S }.

3. Define the classes Σ0,Σ1,Σ2, . . . recursively as follows.

(a) S ∈ Σ0 if and only if X ∈ S ⇒ |X| ≤ 1.

(b) S ∈ Σ1 if and only if ∃a ∈ I such that

i. S {a} ∈ Σ0.

ii. S Θ{a} ∈ Σ1.

(c) S ∈ Σk if and only if ∃a ∈ I such that

i. S {a} ∈ Σk−1.

ii. S Θ{a} ∈ Σk.

Notes 26. [1]

1. if we assume S = ∅ ∈ Σk∀k then Σk−1 ⊆ Σk,k = 1, 2, . . . .

2. ∀S∃h such that S ∈ Σk∀k ≥ h.

67



Chapter 3. Tractable Classes and Hierarchies of Tractable Classes

Definition 159. (k-candidate for a family of sets)[1]
Let IS be the set of elements of I that appear in some set of the family S . a ∈ IS is a k-candidate for S if
and only if S {a} ∈ Σk−1 for k ≥ 1.

Property 49. [1]
For k ≥ 1, S ∈ Σk if and only if ∃(a1, a2, . . . , ap), where a1, a2, . . . , ap are all the elements of IS such that

1. S i
{ai}
∈ Σk−1, i.e. ai is a k-candidate for S i,1 ≤ i ≤ p.

2. S p+1 = ∅, where S i = S i−1Θ{ai}, and S 1 = S .

Property 50. [1]
For k ≥ 0 and a ∈ I, S ∈ Σk ⇒ S Θ{a} ∈ Σk.

Corollary 4. [1]
For k ≥ 0 and any a1, a2, . . . , aq ∈ I,q ≥ 1, S ∈ Σk ⇒ S Θ{a1, a2. . . . , aq} ∈ Σk.

The recognition algorithm

In this section we introduced the recognition algorithm for the class Σk [1].
In order to describe the algorithm, we need the following definitions.

Definition 160. [1]

1. (The labeled rooted tree T(S,k)).
Let S be a family of sets and k be an integer.
Each node of T(S,k) corresponds to a subset of S and the root corresponds to S.
If a node x corresponds to S J and its depth is less than k then for each e ∈ I where e ∈ S J there is
an edge (x,y) labeled e, where y corresponds to S j∪{e}.

The leaves of the tree are nodes where:

(a) The corresponding S J equal ∅ or

(b) their depth equal k.

2. (The operation TEST(x)).
Let x be a leaf, TEST(x) checks whether the corresponding family is in Σ0.

3. (The operation PRUNE(x)).
Let x be a node then PRUNE(x) deletes the element e which labels the edge (p(x),x) [where p(x) is
the father of x in the tree] from all the sets of the family S J corresponding to p(x).

4. Let L be the list of leaves of T(S,k).

(a) (The operation HEAD(x,L)).
HEAD(x,L) finds the head x of L and deletes it from the list.

(b) (The operation INSERT(x,L)).
INSERT(x,L) inserts each leave of the subtree rooted at p(x) in L if it is not already presented
in L.

Theorem 18. [1].
Let Σ be a CNF with n variables, the time complexity of the algorithm 10 is within O(|Σ| × nk).
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Algorithm 10: FASTMEMBER(S , k) [1]

1 BUILD(T(S,k),L);
2 repeat
3 HEAD(x,L);
4 if x is the root T(S,k) then
5 return YES ;

6 if TEST(x) then
7 begin
8 PRUNE(x);
9 INSERT(x,L);

10 until L=nil;
11 return;

Polynomial classes of satisfiability problems

Now we have the necessary material to present the hierarchy Γk.

Notation 11. [1].
Let P be a set of n Boolean propositions and let T denote the proposition that is always TRUE and F
denote the proposition that is always FALSE.
Write a clause in a CNF as follows:
ar+1 ∧ ar+2 ∧ · · · ∧ aq → a1 ∨ a2 ∨ · · · ∨ ar where ai ∈ P, i = 1, 2, . . . , q.
The disjunction a1 ∨ a2 ∨ · · · ∨ ar is called consequence and the conjunction ar+1 ∧ ar+2 ∧ · · · ∧ aq is
called implicant.
Let XC = {a1, a2, . . . , ar} denote the set of propositions which appear in the consequence.
Let G = GH ∪GN be a set of clauses where;

1. GH is a subset of the Horn clauses.

2. GN is a subset of the non-Horn clauses.

Definition 161. [1].
Let S (G) = {XC : C ∈ G}.
For k = 1, 2, . . . let Γk be the set of all the instances of SAT for which S (G) ∈ ΣK .

Remark 18. [1].

1. Γ0 = HORN.

2. Γk−1 ⊆ Γk,k = 1, 2, . . .

3. SAT=
∞⋃

k=0
Γk.

Theorem 19. [1].
For any k,Γk can be solved in O((|Σ|×nk) time.

k-resolution

Buning[112] introduced the so-called k-resolution and showed that k-resolution is complete and sound
for Γk−1 and it is incomplete for Γk.

Definition 162. (k-resolution) [112].
The k-resolution is the ordinary resolution but with at least one of the parent clauses is a k-clause.

Theorem 20. [112].
A k-resolution is complete and sound for Γk−1.
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3.6.2 The hierarchy of Dalal and Etherington [2].

The hierarchy of Gallo and Scutella has the following restriction:

• There exists Σ ∈2-CNF such that Σ < Γk for any integer k. But this is not necessary because 2-CNF
can be solved in linear time.

Dalal and Etherington [2] avoid this restriction by giving a hierarchy Ω = Ω0,Ω1, . . . where

1. (HORN ∪ 2 −CNF) ⊂ Ω0.

2. For each k, j we have Γk ⊂ Ωk but Ωk * Γ j.

3. For each Ωk, the satisfiability problem is solvable in O((|Σ|×nk) time.

They also show that the two hierarchies differ by a CNF which is not 2-CNF.

Definition 163. (Multiset and multisubset) [2].

1. A multiset is a set but the multiple occurrence of an element in it is permitted.

2. A multiset R is multisubset of multiset S denoted by R v S if and only if for each element x, the
number of occurrences of x in R is equal to or fewer than the number of occurrences of x in S .

Notes 27. [2]

1. Let S be a multiset and let set(S ) be the set obtained from S by removing multiple occurrences of
elements.
Let S and R be multisets, R v S ⇒ set(R) ⊆ set(S ).

2. If S is a multiset then {x ∈ S : P(x)} does not remove duplicate elements.

Here, HORN and BINARY denote the set of Horn CNFs and the set of binary CNFs, respectively.
Let Σx = Σ|x and Σ∗ be as defined in section 4.1.

Definition 164. The hierarchies ∆ and Ω [2].
Let I(Σ) be the set of literals that occur in the clauses of Σ. The classes ∆k and Ωk are defined recursively
as follows.

1. Σ ∈ ∆0 if and only if either ⊥ ∈ Σ, or Σ contains no positive clause, or Σ contains no negative
clause, or there is a unit clause {x} ∈ Σ such that Σx ∈ ∆0.

2. For any k, Σ ∈ Ωk if and only if either Σ ∈ ∆k or for all literals x ∈ I(Σ), either Σ∗x ∈ ∆k and
Σ∗¬x ∈ Ωk or Σ∗x v Σ and Σ∗x ∈ Ωk.

3. For any k > 0, Σ ∈ ∆k if and only if either I(Σ) = ∅ or there is a literal x ∈ I(Σ) such that either
Σ∗x ∈ Ωk−1 and Σ∗¬x ∈ ∆k or Σ∗x v Σ and Σ∗x ∈ ∆k.

∆ denotes the hierarchy ∆0,∆1, . . . and Ω denotes the hierarchy Ω0,Ω1, . . .

Notes 28. [2]

1. ∆0 is the set of formulas whose satisfiability can be determined without any case analysis.

2. The class Ωk contains the formulas in which propagating a truth value for any of their literals
reduces them to formulas in either Ωk or ∆k.

3. The class ∆k, contains the formulas in which propagating the truth of some literal reduces them to
formulas in either Ωk−1 or ∆k.
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Theorem 21. [2].

1. For any k, ∆k ⊂ Ωk ⊂ ∆k+1.

2. For any class C in ∆ or Ω, if there are formulas Σ and Σ′ such that Σ ∈ C and set(Σ′) ⊆ set(Σ) then
Σ′ ∈ C.

3. HORN⊂ ∆0 and 2-CNF⊂ Ω0.

Dalal and Etherington [2] presented an algorithm that solves the recognition and satisfiabilty prob-
lems in Ωk in O((|Σ|×nk) time.

Comparison with the hierarchy of Gallo and Scutella

Dalal and Etherington [2] gave the following different notation to the hierarchy of Gallo and Scutella.

Definition 165. [2]
For any clause, C, let C+ = {l : l a positive literal, l ∈ C}. For a CNF Σ, let Σ+ = {C+ : C ∈ Σ}.
Let I+(Σ) be the set of all positive literals occurring in the clauses of the CNF Σ. For any CNF Σ, and
any subset J of I+(Σ), let

1. ΣJ = Σ \ {C ∈ Σ : J ∩C , ∅}.

2. ΣΘJ = {C \ J : C ∈ Σ}.

Γ = Γ1,Γ2, . . . are defined as follows:

1. Σ ∈ Γ0 if and only if C ∈ Σ+ ⇒ |C| ≤ 1.

2. For k > 0, Σ ∈ Γk if and only if ∃a ∈ I+(Σ) such that Σ{a} ∈ Γk−1 and ΣΘ{a} ∈ Γk.

Then they proved the following theorem that explains the relationship between the hierarchy Γ and
the hierarchy Ω.

Theorem 22. [2]
For each k, j,Γk ⊂ Ωk but Ωk * Γ j.

3.6.3 The hierarchy of Pretolani [3]

Now we present Pretolani’s hierarchy [3] which is a general approach that generalizes the Gallo and
ScutelIa’s one.
Here we refer to the CNF Σ as Σ = (P,M), where P is the set of the propositional variables in Σ and M is
the set of the clauses in Σ.

Definition 166. [3]
Let Σ = (P,M) be a CNF then

1. NS (P) = {C ∈ M : ¬p ∈ C}.

2. PS (P) = {C ∈ M : p ∈ C}.

3. M \ p = {C \ {p,¬p} : C ∈ M}.

4. Mp = {C \ {¬p} : C ∈ M \ PS (p)}.

5. M¬p = {C \ {p} : C ∈ M \ NS (p)}.

6. Σ \ p = (P \ {p},M \ p).

7. Σp = (P \ {p},Mp).
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8. Σ¬p = (P \ {p},M¬p).

Definition 167. [3]
Let Φ be a class of CNFs.

1. (A closed under fixing class). Φ is closed under fixing if and only if when Σ = (P,M) ∈ Φ then
both Σp ∈ Φ and Σ¬p ∈ Φ for each p ∈ P.

2. (A closed under union class). Φ is closed under union if and only if when Σ1 = (P,M1) ∈ Φ and
Σ2 = (P,M2) ∈ Φ then Σ = (P,M1 ∪ M2) ∈ Φ.

3. (A closed under splitting class). Φ is closed under splitting if and only if when Σ = (P,M) ∈ Φ

then Σ′ = (P,M′) ∈ Φ for each M′ ⊆ M.

Example 24. [3]
Horn, RHorn, Tovey and binary formulas are closed under fixing and splitting, but only Horn and binary
formulas are closed under union.

Pretolani’s study of Gallo and Scutella’s hierarchy

Pretolani studied Gallo and Scutella’s hierarchy and he introduced a recognition algorithm for member-
ship of Γk that improved their recognition algorithm.

Definition 168. [3]
A formula Σ = (P,M) is GHorn=S 0 = Γ1 if and only if either Σ is Horn, or there exists a variable p ∈ P
such that

1. Σp is a Horn CNF.

2. Σ \ p is a GHorn CNF.

The variable p in the this definition is a candidate for Σ; a CNF may have more than one candidate.

Definition 169. A formula Σ = (P,M) belongs to Γi if and only if either Σ ∈ Γi−1 or there exists a variable
p ∈ P such that

1. Σp belongs to Γi−1.

2. Σ \ p belongs to Γi.

Using the techniques from [74] and [1], Pretolani [3] improved the time efficiency of the Γi-
recognition algorithm.

Theorem 23. [3]
For each i > 0, Γi-recognition can be solved in O(|Σ| ni−1) time.

The general hierarchy of Pretolani [3].

Pretolani [3] has presented a general hierarchy with any polynomially solvable base class (under the quite
weak requirement that this base class be closed under fixing, see definition 3.6.3).

Definition 170. The general hierarchy Πi [3].
Let Π be any polynomially solvable subclass of SAT.
Let Π = Π0 and for each i > 0, a CNF Σ = (P,M) ∈ Πi if and only if either Σ ∈ Πi−1 or there exists a
variable p ∈ P such that one of the following conditions holds.

1. Σp ∈ Πi−1 and Σ¬p ∈ Πi;

2. Σ¬p ∈ Πi−1 and Σp ∈ Πi.
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Notes 29. 1. Πi−1 ⊆ Πi.

2. For any CNF Σ that has n variables we have Σ ∈ Πn−1.

Pretolani [3] introduced an algorithm that solves the satisfiability problem for the classes Πi in niT
time where T is the time of an algorithm that solves the satisfiability problem for the classes Π0.
Also, Pretolani [3] introduced an algorithm that recognizes the membership of the classes Πi in O(ni(|Σ|+
R(Σ))) time where R(Σ) is the time complexity of an algorithm that recognizes the membership of the
classes Π0.
These two algorithms hold under the quite weak requirement that this base class is closed under fixing;
this follows from the following theorem.

Theorem 24. [3]
If the base class Π0 is closed under fixing then each class Πi, i > 0, is closed under fixing.

Split-Horn class and Split-Π class

Pretolani [3] presented a new tractable class that he called Split-Horn. This class is closed under fixing.
Let us denote this class by SpHorn. We have the following theorem [3].

Theorem 25. [3]
If Σ = (P,M) ∈SpHorn then both Σp ∈SpHorn and Σ¬p ∈SpHorn for each p ∈ P.

Let Σp and Σ¬p be the CNFs consisted of the non-Horn clauses of Σp and Σ¬p, respectively.
The definition of Split-Horn class is the following one [3].

Definition 171. [3]
Σ = (P,M) ∈SpHorn if and only if either Σ ∈HORN or there exists a variable p ∈ P such that

1. ∀C ∈ M, C ∩ {p,¬p} = ∅ ⇒ C is a Horn clause.

2. Σp and Σ¬p belong to SpHorn.

The satisfiability problem for SpHorn and SpHorn-recognition can be solved in polynomial time[3].

Theorem 26. let Σ = (P,M) ∈SpHorn be a CNF.

1. The satisfiability problem for Σ can be solved in O(|Σ|2) time.

2. SpHorn-recognition can be solved in O(n|Σ|) time and O(|Σ|) space.

Since SpHorn is closed under fixing, it can be a base class Π0 for the Πi hierarchy. Actually (see [3])
we can use any Split-Π where the class Π is closed under fixing, union and splitting, in this case Split-Π
is closed under fixing, so Split-Π can be a base class Π0 for the Πi hierarchy.

3.6.4 The two hierarchies of Cepek and Kucera [4].

Cepek and Kucera [4] introduced two hierarchies using an approach similar to the general approach of
Pretolani [3] (see section 3.6.3). To define these two hierarchies, let us denote the class of renamable-
Horn (see section 3.3.2) by HH and the set of literals of a CNF by L.

Definition 172. [4]
Let Σ be a formula and J ⊆ L be a set of literals that contains no complementary pair.

1. Σ[J := 0] is the formula obtained from Σ by substituting the value zero for all literals from the set
J (and the value one for their complements),

2. Σ[J := 1] is the formula obtained from Σ by substituting the value one for all literals from the set
J (and the value zero for their complements).
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If J = {e}, we simply write Σ[e := 0] instead of Σ[{e} := 0] and Σ[e := 1] instead of Σ[{e} := 1].

Definition 173. The first hierarchy of Cepek and Kucera [4].
The hierarchy Πk,k = 0, 1, . . . is recursively defined by

1. Π0 = HH.

2. ∀k > 0, Σ ∈ Πk if and only if L = ∅ or there exists e ∈ L such that

(a) Σ[e := 1] ∈ Πk−1

(b) Σ[e := 0] ∈ Πk

Notes 30. [4].

1. Let k ≥ 0 be an integer. We have that Πk ( Πk+1.

2. Let Σ be a formula on n variables. We have that Σ ∈ Πn.

3.
∞⋃

k=0
Πk=SAT.

4. Let k ≥ 0 be an integer, Σ be a CNF and e be a literal. Σ ∈ Πk implies Σ[e := 0] ∈ Πk and
Σ[e := 1] ∈ Πk.

5. Let k, l ≥ 0 be integers and let Σ ∈ Πk and Σ′ ∈ Πl be CNFs on nΣ and nΣ′ variables, respectively,
with var(Σ) ∩ var(Σ′) = ∅. Σ′′ = Σ ∧ Σ′ ∈ Πk+l, where Σ′ is a CNF on nΣ + nΣ′ variables.
Moreover, if k = min{i : i ≥ 0 ∧ Σ ∈ Πi} and l = min{i : i ≥ 0 ∧ Σ′ ∈ Πi} then k + l = min{i : i ≥
0 ∧ Σ′′ ∈ Πi}.

Theorem 27. The recognition and the satisfiability problem for Σ ∈ Πk can be solved in timeO(|Σ|×nk+1)
for any fixed k ≥ 0.

Relationship of the hierarchy of Gallo and Scutella and Π hierarchy [4]

In this section we present the relationship between the hierarchy of Gallo and Scutella and the Π hierarchy
[4].

Property 51. ∀k ≥ 0,Γk ( Πk.

Definition 174. [4].
Let Γk = {Σ : ∃S ⊆ {1, 2, . . . , n},ΣS ∈ Γk}, (see definition 99 for ΣS ).

Property 52. [4].
∀k ≥ 0,Γk ⊆ Πk.

Property 53. [4].
Γ0 = Π0 and Γk ( Πk,∀k ≥ 1.

To give the next theorem, we need the following definition.

Definition 175. Being closed under disjoint union class.
A class Φ is closed under disjoint union if and only if when Σ1 ∈ Φ and Σ2 ∈ Φ are two CNFs with
disjoint sets of variables then Σ1 ∧ Σ2 ∈ Φ.

Property 54. [4].
Let Φ be a class of CNFs closed under disjoint union.
If Φ \ Π0 , ∅ then Φ \ Πk , ∅,∀k ≥ 0.
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Corollary 5. [4].
For each k ≥ 0 there is 2-SAT CNF Σ1 < Πk, q-Horn CNF Σ2 < Πk and an extended hidden Horn CNF
Σ3 < Πk.

Proof. [4].
Indeed, all three classes are closed under disjoint union and in each one of them there are CNFs which
are not hidden Horn. �

The choice of hidden Horn class as a base class in the definition 173 is not essential, what essential
for the base class is

1. closeness under variable complementation; and

2. closeness under partial assignment.

So, in the second hierarchy they used q-Horn as base class.

Definition 176. The second hierarchy of Cepek and Kucera [4].

The hierarchy Υk, k = 0, 1, . . . is recursively defined by

1. Υ0 = q − Horn.

2. ∀k > 0, Σ ∈ Υk if and only if L = ∅ or there exists e ∈ L such that

(a) Σ[e := 1] ∈ Υk−1

(b) Σ[e := 0] ∈ Υk

One can prove that almost all results for Π-hierarchy is also TRUE for Υ-hierarchy.
Also we have the following.

Property 55. [4].
Πk ( Υk,∀k ≥ 0.

Corollary 6. [4].
The class Υ1 properly contains both the class S 0 and the class of q-Horn formulas (i.e., class Υ0 ).
Moreover, recognition of Υ1 and satisfiability for Υ1 can be done in O(l × n2) time where l is the length
of a CNF in Υ1.

3.6.5 The Kullmann’s hierarchy [5]

Kullmann [5] gave a more general approach than Pretolani’s one [3] and improved it in several aspects.
To present the Kullmann’s hierarchy, we need some notations.

Notation 12. [5]

1. CLS denotes the set of all CNFs

2. {S AT } denotes the set of satisfiable CNFs and {US AT } denotes the set of unsatisfiable CNFs.

3. PAS S denotes the set of all partial assignments.

4. If Σ is a CNF and Φ is a partial assignment then Σ|Φ denotes the act of Φ on Σ, i.e., Σ|Φ obtained
from Σ by eliminating all clauses containing a literal x assigned truth value 1 by Φ and cancelling
all literals assigned truth value 0 by Φ from the remaining clauses of Σ.
In particular if vi are variables and εi ∈ {0, 1}, i = 1, 2, . . . ,m then
Σ|<v1→ε1,v2→ε2,...,vm→εm> denotes the action of eliminating all clauses that contain a literal vεi

i , i =

1, 2, . . . ,m and canceling all literals v¬εi
i , i = 1, 2, . . . ,m from the remaining clauses of Σ. where

v1 = v and v0 = ¬v.
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5. Let Σ be a CNF and Φ be a partial assignment then var(Σ) and var(Φ) denote the set of the
variables of Σ and Φ, respectively.

6. modp(Σ) := {Φ ∈ PAS S : var(Φ) ⊆ var(Σ) ∧ Σ|Φ = TRUE} is the set of all partial assignments
satisfying Σ (the set of all partial models).

7. modt(Σ) := {Φ ∈ PAS S : var(Φ) = var(Σ) ∧ Σ|Φ = TRUE} is the set of all total assignments
satisfying Σ (the set of all total models).

The Gk(U, S ) hierarchy [5]

We present in this section the hierarchy Gk(U, S ) [5]. We need the following definitions.

Definition 177. enforced assignment[5].
A partial assignment Φ ∈PASS is an enforced assignment for a CNF Σ if and only if for all v ∈ var(Φ)
flipping the value of Φ on v yields an unsatisfiable CNF, i.e.,
Σ|<v→¬Φ(v)> ∈ {US AT }.

Example 25. If {x1}, {x2}, . . . , {xr} is the unit clauses of a CNF Σ then < x1 → 1, x2 → 1, . . . , xr → 1 >
is an enforced assignment for Σ.

Definition 178. Stable under enforced assignments class[5].
A class C ⊆ CLS is stable under enforced assignments if and only if for any Σ ∈ C and any enforced
assignment Φ for Σ we have Σ|Φ ∈ C.

Notes 31. [5]
Let Σ ∈ CLS and Φ,Φ′ ∈ PAS S then

1. The following are equivalent.

(a) Φ enforced assignment for Σ.

(b) ∀Φ′ ∈ modp(Σ), Φ ⊆ Φ′.

(c) ∀Φ′ ∈ modt(Σ), Φ ⊆ Φ′.

2. If Φ enforced assignment for Σ then Σ|Φ is equivalent to Σ.

3. If Φ enforced assignment for Σ and Φ′ ⊆ Φ then Φ′ enforced assignment for Σ.

4. For Σ ∈ {US AT } every partial assignment Φ is enforced, so C ⊆ {US AT } is stable under enforced
assignments if and only if C is stable under partial assignments.

5. For any family (Ci),i ∈ I of classes Ci ⊆ CLS such that all Ci are stable under enforced assign-
ments then

⋃
i∈I

Ci and
⋂
i∈I

Ci are stable under enforced assignments.

Also we need the following definition to preset the hierarchy Gk(U, S ).

Definition 179. Allowing substitution class[5]
A class C ⊆ CLS allows substitution if and only if for every Σ ∈ C with var(Σ) , ∅ there is (v, ε) ∈
var(Σ) × {0, 1} with Σ|<v→ε> ∈ C.

Notes 32. [5].

1. If C ⊆ {US AT } is stable under partial assignments then C trivially allows substitution. But a
satisfiable CNF needs not have any enforced assignments, and thus C ⊆ {S AT } which is stable
under enforced assignments may not allow substitution.

2. For any family (Ci), i ∈ I of classes Ci ⊆ CLS such that all Ci allow substitution then
⋃
i∈I

Ci allows

substitution too.
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Now we are ready to present the hierarchy Gk(U, S ).

Definition 180. The hierarchy Gk(U, S )[5]
Consider the CLSs U ⊆ {US AT } and S ⊆ {S AT } that satisfies.

1. U0 := {Σ ∈ CLS : ⊥ ∈ Σ} ⊆ U.
S 0 := {{}} ⊆ S .

2. U and S are stable under enforced assignment and allow substitution.

Now,

1. Let G0
0(U, S ) := U.

Define the classes G0
k+1(U, S ),k ≥ 0 as follows.

Σ ∈ G0
k+1(U, S ) if and only if either Σ = ⊥ or there is (v, ε) ∈ var(Σ) × {0, 1} with

Σ|<v→ε> ∈ G0
k(U, S ) and Σ|<v→¬ε> ∈ G0

k+1(U, S ).

2. Let G1
0(U, S ) := S .

Define the classes G1
k+1(U, S ),k ≥ 0 as follows.

Σ ∈ G1
k+1(U, S ) if and only if either Σ = {} or there is (v, ε) ∈ var(Σ) × {0, 1} with

Σ|<v→ε> ∈ G1
k(U, S ) or [Σ|<v→ε> ∈ G0

k(U, S ) and Σ|<v→¬ε> ∈ G1
k+1(U, S )].

Finally Gk(U, S ) := G0
k(U, S ) ∪G1

k(U, S ).

Notes 33. [5]

1. Let n be the number of variables of a CNF Σ then Σ ∈ Gn.

2.
⋃

k∈N
G0

k(U, S ) = {US AT } and
⋃

k∈N
G1

k(U, S ) = {S AT }.

3. If S , S ′,U,U′ are sets such that

(a) U0 := {Σ ∈ CLS : ⊥ ∈ Σ} ⊆ U ⊆ U′.
S 0 := {{}} ⊆ S ⊆ S ′.

(b) U and S are stable under enforced assignment and allow substitution.

and ε ∈ {0, 1} then Gε
k(U, S ) ⊆ Gε

k(U′, S ′).

The hierarchy Gk(U, S ) forms a cumulative hierarchy, that is:

Property 56. [5].
Gk(U, S ) ⊆ Gk+1(U, S ) ∀k ≥ 0.

Also Kullmann [5] presented a very important result that shows the universal property of the classes
of his hierarchy Gk(U, S ) that forms a basic for all proofs of inclusion of another hierarchy.

Theorem 28. [5]
Let (S k),k ∈ N be any family of classes S k ⊆ CLS of CNFs.
Assume

1. S m ⊆ Gm(U, S ) for some m ≥ 0.

2. For k > m and Σ ∈ S k \ S k−1 with var(Σ) , ∅, we have Σ ∈ Gk(U, S ) or
there is (v, ε) ∈ var(Σ) × {0, 1} with
Σ|<v→ε> ∈ S k−1 and [Σ|<v→ε> < {S AT } ⇒ Σ|<v→¬ε> ∈ S k].

Then ∀ ∈ N,k ≥ m⇒ S k ⊆ Gk(U, S ).

Also we have the following about the stability of Gk(U, S ).
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Remark 19. [5].

1. All Gk(U, S ) are stable under enforced assignments and allow substitution.

2. If U and S are stable under renaming then so all Gk(U, S ).

Finally Kullmann [5] gave the following result.

Theorem 29. [5]
Let U and S be as in the definition 180, if the decisions of Σ ∈ U and Σ ∈ S can be done in polynomial
time then membership and SAT decision for each class Gk(U, S ) is also polynomial time.

3.6.6 The hierarchies that generalize the SLUR class

The SLUR class (see section 14 for SLUR class) has been generalized into hierarchies of tractable classe
by different methods [84, 106, 107, 108] We present in this section three hierarchies that generalize
the SLUR class: namely, the S LUR(i) hierarchy[84], the S LUR∗(i) hierarchy [106] and the S LURi

hierarchy [107, 108].

• S LUR(i) hierarchy[84, 106]
The S LUR(i) hierarchy [84] is obtained by modifying the SLUR algorithm; this is done by choos-
ing i variables (instead of choosing one variable as in the SLUR algorithm) at each step, if the
sequence of nondeterministic choices never gives up on the given CNF then this CNF is in the
S LUR(i) class.
Let Σ be a CNF, the S LUR(i,Σ) algorithm [84, 106] works as following;

1. Selects i variables,

2. Runs unit propagation on all possible 2i assignments,

3. If all assignments produce the empty clause in the first iteration S LUR(i,Σ) returns unsatis-
fiable,

4. If all assignments produce the empty clause in any of the subsequent iterations S LUR(i,Σ)
gives up,

5. If at least one of the assignments does not produce the empty clause, S LUR(i,Σ) nondeter-
ministically chooses one of these assignments and continues.

Definition 181. (S LUR(i) class)[84, 106]
Let Σ be a CNF. Σ ∈ S LUR(i) if and only if S LUR(i,Σ) algorithm does not give up on Σ.

Property 57. [84, 106]

1. S LUR ( S LUR(1) (since a CNF where the SLUR algorithm gives up after selecting the first
variable does not belong to the SLUR class but it belongs to SLUR(1)).

2. For every i ≥ 1,S LUR(i) ( S LUR(i + 1).

3. If Σ is a CNF with n variables then Σ ∈ S LUR(n).

4. SAT=
∞⋃

i=1
S LUR(i).

5. For fixed i, S LUR(i) is a tractable class of SAT but the time complexity grows exponentially
in i.

Property 58. [84]

1. The membership problem for the class SLUR is coNP- complete.

2. For each i, the membership problem for the class SLUR(i) is coNP- complete.
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• S LUR∗(i) hierarchy [106]
The S LUR∗(i) hierarchy [106] is a restriction of a DPLL algorithm (see section 2.5 for DPLL
algorithm), since SLUR algorithm itself can be seen as restriction of a DPLL algorithm because
SLUR algorithm gives up instead of backtracking more than one level, so one [106] can generalize
this intuition by allowing backtracking not one, but i levels before giving up, in this case we have
a hierarchy (the so called S LUR∗(i) hierarchy [106]). To explain this, let illustrate it by means of
an example [106].

Example 26. Consider the following CNF:
Σ = {{x1,¬x2}, {¬x1, x2}, {x1, x2, x3, x4}, {x1, x2,¬x3, x4}, {x1, x2, x3,¬x4}, {x1, x2,¬x3,¬x4}}.
Σ < S LUR(2). Note that the literals x1 and x2 are equivalent, and if the S LUR(2) algorithm
chooses x1 and x2 and then chooses the assignment x1 = x2 = 0 then the S LUR(2) algorithm
gives up because the remaining CNF is an unsatisfiable quadratic CNF.
Hence S LUR(2) algorithm does not benefit from choosing two variables because they are equiv-
alent, but if S LUR(2) algorithm performs unit propagation after choosing a value for x1 then it
will not choose x2 as second variable and it will be able to know that the the remaining CNF is
unsatisfiable if x1 = 0.
This is the idea behind S LUR∗(i) hierarchy which consist of

1. At each step S LUR∗(i) algorithm chooses i variables one by one. then;

2. S LUR∗(i) algorithm performs unit propagation between each of these choices instead of after
all of them, see algorithm 12.

Algorithm 11: test algorithm test(Σ, k)[106]

1 Input: A CNF formula Σ, a number of decisions k which remains to be made by the algorithm;
2 Output: A partial assignment which have not led to an empty clause after k decisions, or UNS AT

if no such assignment exists;
3 (Σ, t)← UP(Σ) ;
4 if Σ contains an empty clause then
5 return UNS AT ;

6 if k=0 then
7 return empty assignment ;

8 e← an undetermined literal (positive or negative);
9 t′1 ← test(Σ1, k − 1);

10 if previous test did not return UNS AT then
11 return t ∪ t1 ∪ t′1 ;

12 t′2 ← test(Σ2, k − 1);
13 if previous test did not return UNS AT then
14 return t ∪ t1 ∪ t′2 ;

15 return UNS AT ;

Property 59. [106]

1. S LUR(i) ⊆ S LUR∗(i). In fact S LUR(1) = S LUR∗(1) and S LUR(i) ( S LUR∗(i) for i > 1.

2. S LUR∗(i) ( S LUR∗(i + 1) for every i ≥ 1.

3. S LUR(i) ∩ S LUR∗(2) , ∅ for every i > 1.

4. If Σ is a CNF with n variables then Σ ∈ S LUR∗(n).

5. SAT=
∞⋃

i=1
S LUR∗(i).
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Algorithm 12: S LUR∗(i) algorithm S LUR∗(i,Σ)[106]

1 Input: A CNF formula Σ with no empty clause ;
2 Output: A partial truth assignment satisfying Σ,UNS AT , or give-up;
3 (Σ, t)← UP(Σ) ;
4 if Σ contains an empty clause then
5 return UNS AT ;

6 while Σ is not empty do
7 t′ ← test(Σ, i) ;
8 if previous test returned UNS AT then
9 if it is the first run of the while cycle then

10 return UNS AT ;
11 else give up;

12 t ← t ∪ t′;
13 return t ;

6. For fixed i, S LUR∗(i) is a tractable class of SAT but the time complexity grows exponentially
in i.

• S LURi hierarchy and UCi hierarchy [107, 108]
The authors in [107, 108] on one side generalized S LUR to S LURi hierarchy that contains both
S LUR(i) hierarchy and S LUR∗(i) hierarchy. On the other side they generalized the UC class to
UCi hierarchy (see definition 188). Then they unify the two approaches by showing that S LURi =

UCi ∀i.
They argued that S LURi hierarchy is the natural limit of these approaches, their argument being
based on their proof that S LURi = UCi.
In this section we present the basic definitions and results about these approaches.

1. S LURi hierarchy [107, 108]
The authors in [107, 108] presented S LURi hierarchy that generalizes of a (mathematical)
definition of S LUR class.
To define S LUR class mathematically [107, 108], we need the definition of S LUR transition
relation from a CNF to a CNF.

Notation 13. In this section, we denote the UP procedure as UP1.

Definition 182. (S LUR transition relation) [107, 108]

Let Σ and Σ′ be two CNFs, the relation Σ
S LUR
−−−−−→ Σ′ holds if and only if there is x ∈ L(Σ) such

that Σ′ = Σ|x = UP1(Σ ∪ x) and Σ′ , ⊥.

The transitive reflexive closure of the relation Σ
S LUR
−−−−−→ Σ′ is denoted by the relation

Σ
S LUR
−−−−−→∗ Σ′.

Using this transition relation, the authors in [107, 108] presented a mathematical definition
of the S LUR class and found a natural generalization of it (i.e., the S LURi hierarchy).

Definition 183. (mathematical definition of S LUR class) [107, 108]

Let Σ and Σ′ be two CNFs and Let slur(Σ) := {Σ′ ∈ CLS : Σ
S LUR
−−−−−→∗ Σ′ ∧ ¬∃Σ′′ ∈ CLS :

Σ′
S LUR
−−−−−→∗ Σ′′}, then the S LUR class is defined as S LUR := {Σ ∈ CLS : UP1(Σ ∪ x) , ⊥ ⇒

slur(Σ) = >}.

The generalization of UP1 that was presented by [107, 108] is the following one.

Definition 184. (The generalization UPi of UP1 of level i)[107, 108]
Let i ∈ N ∪ {0}, the map UPi : CLS → CLS are
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UP0(Σ) :=
{
⊥ if ⊥ ∈ Σ

Σ otherwise

UPi+1(Σ) :=
{

UPi+1(Σ ∪ {x}) if ∃x ∈ L(Σ) : UPi(Σ ∪ {¬x}) = ⊥

Σ otherwise

Now we can define the S LURi hierarchy.

Definition 185. (S LURi hierarchy)[107, 108]

Let Σ and Σ′ be two CNFs and let i ∈ N ∪ {0}, the relation Σ
S LUR:i
−−−−−−→ Σ′ holds if and only if

there is x ∈ L(Σ) such that Σ′ = UPi(Σ ∪ x) and Σ′ , ⊥.

The transitive reflexive closure of the relation Σ
S LUR:i
−−−−−−→ Σ′ is denoted by the relation

Σ
S LUR:i
−−−−−−→∗ Σ′.

Let sluri(Σ) := {Σ′ ∈ CLS : Σ
S LUR:i
−−−−−−→∗ Σ′ ∧ ¬∃Σ′′ ∈ CLS : Σ′

S LUR:i
−−−−−−→∗ Σ′′}. The S LURi

hierarchy is defined as S LURi := {Σ ∈ CLS : UPi(Σ ∪ x) , ⊥ ⇒ sluri(Σ) = >}

Notes 34. [107, 108]

(a) S LUR1 = S LUR.
(b) S LUR∗(i) ⊂ S LURi+1 and S LUR2 1 S LUR∗(i).

2. UCi hierarchy [107, 108]
In [113] the class UC is presented: it contains the CNFs which have the following property.
Deciding if Σ � C (i.e., C is an implicate of Σ) can be done by UP.
Using the hardness notion (hd(Σ)), the authors showed that hd(Σ) ≤ i if and only if all
implicates of Σ can be derived by i-times nested input resolution from Σ. From this, the class
UC is the class of CNFs with hardness less than or equal 1. So they define the hierarchy UCi

as the class of CNFs with hardness less than or equal i.

Definition 186. [107, 108]
Let Σ be a CNF and C ∈ Σ, C = {l1, . . . , lk} then Σ �i C if and only if UPi(Σ∪ {l1} · · · ∪ {lk}) =

⊥.

Definition 187. (the hardness hd(Σ)) [107, 108]
Let Σ be a CNF, the hardness hd(Σ) is the minimal integer i ≥ 0 such that for all clauses C
with Σ � C we have Σ �i C.

Definition 188. (UCi hierarchy)[107, 108]
For i ≥ 0, UCi := {Σ ∈ CLS : hd(Σ) ≤ i}.

Theorem 30. [107, 108]

(a) S LURi = UCi for all i ≥ 0.
(b) Let Πi and Υi be the two hierarchies defined in section 3.6.4. Πi ⊂ UCi+1 and Υi ⊂

UCi+2.

• CANON(i) hierarchy [106, 107, 108]
The canonical CNF of a given a Boolean function is the CNF that consists of all prime implicates
of the function. The authors [84] showed that the canonical CNF of a given Boolean function
belongs to the SLUR class.

Definition 189. [84]

1. A Boolean function f on n propositional variables x1, . . . , xn is a mapping f : {0, 1}n →
{0, 1}.

2. let f and g be two Boolean functions, we write f ≤ g if and only if ∀(x1, x2 . . . , xn) ∈ {0, 1}n,
f (x1, . . . , xn) = 1 ⇒ g(x1, . . . , xn) = 1. Since a clause is a Boolean function, we have
C1 ≤ f , f ≤ C1, C1 ≤ C2 (where C1,C2 are clauses and f is a Boolean function) as special
cases.
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3. A clause C is an implicate of a Boolean function f if f ≤ C.

4. An implicate clause C of a Boolean function f is prime if f ≤ C and ∀C′ ⊂ C, f � C.

5. A CNF Σ representing a function f is prime if each clause of Σ is a prime implicate of function
f .

6. The unique CNF consisting of all prime implicates of function f is called the canonical CNF
of f .

7. A CNF Σ representing a function f is irredundant if removing any clause from Σ produces a
CNF that does not represent f .

Property 60. [84]
Let C1 and C2 be two clash implicates of a Boolean function f . Then their resolvent η[l,C1,C2] is
also an implicate of f .

Theorem 31. [84]
Let f be a Boolean function and let Σ be its canonical CNF, then Σ is a SLUR CNF.

Definition 190. (derivation of a clause from a CNF by a series of resolutions)[106]
Let Σ be a CNF that represents a Boolean function f , a clause C can be derived from Σ by a series
of resolutions if there is a sequence of clauses C1, . . . ,Ck = C s.t. for every i, 1 ≤ i ≤ k, either
Ci ∈ Σ or Ci = η[l,C j1 ,C j2] where j1, j2 ≤ i.

Notes 35. [84]
Let Σ be a CNF that represents a Boolean function f , every prime implicate of f can be derived
from Σ.

Definition 191. (depth of resolution derivation of a clause from a CNF)[106]
The depth of resolution derivation of a clause C from a CNF Σ is defined as follows.

1. It is 0 when C ∈ Σ.

2. It is the maximum of depths of resolution derivations of Ci and C j increased by 1, if C can be
derived from Σ by a series of resolutions C1, . . . ,Ck = C where C = η[l,Ci,C j] with i, j ≤ k.

3. It is infinity if and only if C cannot be derived from Σ by a series of resolutions.

Notes 36. [106]
The depth of resolution derivation of a clause from a CNF depends on a particular series of
resolutions.

Definition 192. (resolution depth of a clause with respect to CNF)[106]
Let C be a clause in a CNF Σ, C has resolution depth d with respect to CNF Σ if and only if C
can be derived by a series of resolutions of depth d and there is no series of resolutions of depth
smaller than d that can derive C.

Definition 193. (CANON(i) hierarchy)[106]
Let Σ be a CNF and let f be a Boolean function that is represented by Σ. The CNF Σ ∈ CANON(i),
i ≥ 0 if and only if every prime implicate of f has a resolution depth of at most i with respect to Σ.

Property 61. [106]

1. If Σ ∈ CANON(0) then Σ contains all prime implicates of f where f is a Boolean function
represented by Σ.

2. Let Σ ∈ CANON(1) and x ∈ V(Σ) then both Σ[:= 0] and Σ[:= 1] belong to CANON(1).

3. If Σ ∈ CANON(1) then either Σ contains an empty clause, or an empty clause is generated
during UP(Σ).

The following property shows the relationship between CANON(i) and SLUR, UCi, S LUR∗(i).
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Property 62. [106, 107, 108]

1. (a) CANON(0) ⊂ S LUR [106].

(b) CANON(1) ⊂ S LUR [106].

(c) CANON(2) 1 S LUR [106].

2. CANON(i) ⊆ UCi and UC1 * CANON(i), so CANON(i) ⊂ UCi[107, 108].

3. CANON(2) ∩ S LUR∗(i) , ∅ for every i ≥ 1[106].

3.6.7 The hierarchy of Andrei et al.( Rankk hierarchy)

The authors in [109] introduced a hierarchy (Rankk hierarchy), where in the subclass of CNFs of rank
k any set of k + 1 clauses are related, that is there exists at least one literal in one clause that appears
negated in another clause of the set of k + 1 clauses. They showed that the classes Rankk are tractable
classes and these classes are nested and hence they represent a hierarchy.

We first define the reducible and irreducible CNFs.

Definition 194. (reducible and irreducible CNF)[109]
A CNF Σ is reducible if and only if it has two clash clauses, it is irreducible if and only if it is not
reducible.

Definition 195. (di fV (Σ)) [109]

1. Let Σ be a CNF, MV (Σ) = {v ∈ V(Σ) : neither v nor ¬v appears in any clause of Σ}.

2. di fV (Σ) =

{
0 if Σ is reducible
2MV (Σ) otherwise

The definition of Rankk hierarchy follows from the definition of di fV (Σ).

Definition 196. (Rankk hierarchy) [109]

1. Let Σ = {C1,C2, . . . ,Cn} be a CNF, Σ has rank k if and only if di fV ({Ci1 , . . . ,Cik+1}) = 0 for any
i1, . . . , ik+1 distinct indices from {1, 2, . . . , n}.

2. Rankk denotes the class of all CNFs of rank k.

The classes Rankk, k = 1, . . . are nested.

Property 63. [109]
Rankk ⊆ Rankk+1.

Example 27. [109]
Σ1 = {{x1, x2}, {¬x2, x3}} has rank 1 while Σ2 = {{x1,¬x2}, {x2,¬x3}, {x1, x3}} is Rank2 CNF but it is not a
Rank1 CNF.

The classes Rankk, k = 1, . . . are tractable.

Property 64. [109]
The satisfiability problem for instances in the classes Rankk can be decided in polynomial time and
checking if a CNF belongs to the classes Rankk can be done in polynomial time.
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3.7 The relationships among Tractable Classes and Hierarchies of
Tractable Classes

In this section we give some of the relationships among tractable classes and hierarchies of tractable
classes.

Property 65. (matched, q-Horn and SLUR are mutually incomparable)[77]

1. Σ = {{x1, x2,¬x4}, {¬x1,¬x3, x4}, {¬x2, x3,¬x5}} is a matched formula and a SLUR formula but it
is not a q-Horn formula .

2. Σ = {{x1,¬x2, x4}, {x1, x2, x5}, {¬x1,¬x3, x6}, {¬x1, x3, x7}} is a matched and a q-Horn formula but
it is not a SLUR formula.

3. Any Horn formula with more clauses than distinct variables is both SLUR and q-Horn but it is not
Matched.

Property 66. (LinAut properly contains [q-Horn formula with no unit clauses])[94]

1. A q-horn formula without unit clauses is a LinAut formula.

2. Σ = {{x1, x2, x3}, {¬x1,¬x2,¬x3}} is LinAut formula but it is not a q-Horn formula.

Property 67. (SLUR and LinAut are incomparable) [77], [94]

1. Σ = {{¬x1, x2, x3}, {x1,¬x2, x3}, {x1, x2,¬x3}, {¬x1,¬x2,¬x3}} is SLUR but not a LinAut formula.

2. Σ = {{x1,¬x2, x4}, {x1, x2, x5}, {¬x1,¬x3, x6}, {¬x1, x3, x7}} is a LinAut formula but it is not a SLUR
formula.

Property 68. (LinAut properly contains matched formula)[82]

1. A matched formula is a LinAut formula.

2. Any Horn formula with more clauses than distinct variables and without unit clauses is LinAut
(since it is q-Horn) but it is not Matched.

Property 69. (nested vs (q-Horn and SLUR)) [77]

1. Σ = {{¬x1, x2,¬x3}, {¬x3,¬x4}, {x1, x3, x5}, {x3, x4,¬x5}} is nested but not q-Horn.

2. Σ = {{x1,¬x2, x3}, {¬x1, x4}, {¬x1,¬x4}, {x1, x2}} is nested but not SLUR.

Property 70. (hidden Horn vs S 0 )[4]
hidden Horn formulas is not contained in S 0.

Property 71. (the relationships among hidden extended Horn,q-Horn and S 0 )[4]

1. hiddenextendedHorn ∩ q − Horn ∩ S 0 , ∅.

2. hiddenextendedHorn ∩ q − Horn ∩ S 0 , ∅.

3. hiddenextendedHorn ∩ q − Horn ∩ S 0 , ∅.

4. hiddenextendedHorn ∩ q − Horn ∩ S 0 , ∅.

5. hiddenextendedHorn ∩ q − Horn ∩ S 0 , ∅.

6. hiddenextendedHorn ∩ q − Horn ∩ S 0 , ∅.

7. hiddenextendedHorn ∩ q − Horn ∩ S 0 , ∅.

84



3.7. The relationships among Tractable Classes and Hierarchies of Tractable Classes

8. hiddenextendedHorn ∩ q − Horn ∩ S 0 , ∅.

Property 72. (hidden Horn vs the hierarchy of Gallo and Scutella)[4]
hiddenHorn ∩ (Γk+1 \ Γk) , ∅,∀k.

Property 73. (the relationships among (hidden extended Horn,q-Horn) and the hierarchy of Gallo and
Scutella)[4]

1. (hiddenextendedHorn ∩ q − Horn) ∩ (Γk+1 \ Γk) , ∅,∀k.

2. (hiddenextendedHorn \ q − Horn) ∩ (Γk+1 \ Γk) , ∅,∀k.

3. (q − Horn \ hiddenextendedHorn) ∩ (Γk+1 \ Γk) , ∅,∀k.

With these comparisons between tractable classes and hierarchies of tractable classes, one can con-
clude that no hierarchy is sufficiently general to include all tractable classes.
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Chapter4
Extensions and Variants of

Dalal’s Quad Class

This chapter focuses on the so-called Quad polynomial fragments proposed in [6] as “almost" quadratic
fragments of SAT. Firstly, we establish some properties of Quad fragments. Secondly, we extend these
fragments and exhibit promising variants, too.

More precisely, we start [114] by studying the sensitivity of Quad fragments to clause elimination and
variable assignment. Then, an extension is obtained by allowing Quad fixed total orderings of clauses to
be accompanied with specific additional separate orderings among maximal sub-clauses. Interestingly,
the resulting fragments extend Quad without degrading its worst-case complexity. Finally, we question
other issues founding Quad that could be relaxed while keeping the polynomial complexity. Especially,
we investigate how bounded resolution and redundancy through unit propagation can play a role in this
respect.

The chapter is thus organized as follows. In the next section (4.1) Quad classes are presented and
we show that Dalal’s Quad fragments depend on orders in section 4.2. In section 4.3, the sensitivity of
Quad fragments is analyzed with respect to clauses elimination and variable assignment. In section 4.4,
various possible ways to extend Quad or lead to variants are listed. In this respect, one extension and
one variant of Quad are proposed as a case study and analyzed in sections 4.5 and 4.6, respectively.

4.1 The Ordering of Clauses and Quad Classes

This section investigates the so-called Quad polynomial fragments of SAT proposed in [6].

We use total orderings ≺ between all literals of L. Actually, any total ordering on all literals of L
induces a total ordering among all clauses of L in the following sense.

Notation 14. Let ≺ be a total ordering among all literals ofL and C and C′ be two clauses ofL: C ≺ C′

if and only if C ⊂ C′ or there exists a literal l in C \C′ such that l ≺ m for each literal m in C′ \C.

Quad is based on a linear-time fragment of SAT called Root. The Root fragment consists of four
parts (all four are solved and recognized as polynomial subclasses of SAT);

Definition 197. (Root) [6]
A formula Σ is in class Root, if either

1. ⊥ ∈ Σ, or

2. Σ contains no positive clause, or

3. Σ contains no negative clause, or

4. all clauses of Σ are binary.

Based on Root, Quad fragments are defined as follows.

Definition 198. (Quad) [6]
Let ≺ be a total ordering between literals of L.
A formula Σ is in class Quad if and only if
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1. Σ∗ belongs to Root, or

2. for the first maximum sub-clause C′ of the first clause C ∈ Σ∗ for which (Σ ∧C′)∗ is in class Root:

(a) either (Σ ∧C′)∗ is satisfiable, or

(b) the formula (Σ \ {C}) ∪ {C′} is in class Quad.

One can define a subclass of SAT by taking all the possible orders.

Notation 15. (
⋃

Quad)
As emphasized by Dalal himself, Quad depends on the considered ordering of literals, which induces a
total ordering of clauses (and sub-clauses) of Σ. Different orderings can lead to different Quad fragments
see section 4.2. The set of all Quad fragments is noted

⋃
Quad.

Quad is almost quadratic time subclass of SAT.

Remark 20. Interestingly, a formula Σ in Quad can be both recognized and solved in O(d × |Σ|2) time,
where d is the size of the longest clause in Σ. Accordingly, when a fixed upper bound is enforced on the
clause length in Σ, Quad is recognizable and solvable in quadratic time.

Tractable algorithms

In this section three tractable algorithms to check the satisfiability of the CNF Σ are presented; these
algorithms return either {} or ⊥ or a simplified CNF Σ′ where {} denotes that Σ is satisfiable, ⊥ denotes
that Σ is unsatisfiable. The 2-SAT instances can be solved in linear time; see section 3.3.1. Dalal [6]
refers to the algorithm that solves 2-SAT instance Σ as Binsat(Σ).

Definition 199. (Binsat function)
Binsat(Σ) returns Σ if Σ has a non-binary clause else it returns {} if Σ is satisfiable; it returns ⊥ if Σ is
unsatisfiable.

4.1.1 The Basic Algorithm RootSat

The algorithm RootSat (see Algorithm 13) recognizes and solves the elements of the RootSat class. It
works as follows.

• Firstly, it repeatedly removes the unit clauses using the UP procedure until we get a CNF without
unit clause.

• Then the conditions for membership in class Root are tested one by one;

1. If the resulting CNF from the UP procedure has no positive clauses or no negative clauses,
the algorithm RootSat returns {} (i.e., satisfiable).

2. If the resulting CNF from the UP procedure has positive clauses and negative clauses then
it uses Binsat to check if it is binary CNF or not and if it is binary then it returns {} (i.e.,
satisfiable) or ⊥ (i.e., unsatisfiable), see Algorithm 13.

The algorithm RootSat is complete for the Root class and halts in time O(|Σ|).

4.1.2 The Qsat algorithm

The algorithm Qsat (see algorithm 14) is a recognition and decision algorithm for the Quad class.
It works as follows.

1. It takes each non-unit clause σ of Σ one by one according to the order ≺.
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Algorithm 13: RootSat(Σ) [6]

1 while Σ has a unit clause do
2 select a unit clause {x};
3 Σ← {C ∈ Σ|x < C};
4 Σ← {C \ {¬x}|C ∈ Σ};

5 if ⊥ ∈ Σ then
6 Σ← ⊥;

7 if Σ has no positive clause then
8 Σ← {};

9 if Σ has no negative clause then
10 Σ← {};

11 return Binsat(Σ);

2. After choosing the clause σ in step 1, it takes each max-subclause µ of σ according also to the
order ≺.

3. It computes R where R is RootSat(Σ ∪ ¬µ). If R ∈ Root and it is satisfiable then Qsat returns
satisfiable; if R ∈ Root and it is unsatisfiable then Qsat replaces Σ by µ in the CNF Σ and repeats
according to step 1 and 2.

4. Qsat terminates in one of two cases:

• Σ is determined to be satisfiable or unsatisfiable.

• all µ’s and σ’s are taken.

Algorithm 14: Qsat(Σ) [6]

1 Σ := RootSat(Σ);
2 repeat
3 if Σ = {} or Σ = ⊥ then
4 return Σ;

5 σ← next non-unit clause in Σ;
6 µ← next max-subclause in σ;
7 R←RootSat(Σ ∪ ¬µ);
8 if R = {} then
9 return {};

10 if R = ⊥ then
11 Σ←RootSat(Σ \ ({σ} ∪ {µ});

12 reset σ and µ;
13 until no more σ and µ;
14 return Σ;

Algorithm Qsat is complete for the Quad class and halts in O(|Σ|3).

4.1.3 The Quadsat algorithm

The Qsat algorithm suffers from repeating the computations for each σ and µ after each change in Σ. So,
in this section we present a more efficient algorithm QuadSat [6] that avoids the previous pitfalls of the
Qsat algorithm. The idea can be summarized as follows:

91



Chapter 4. Extensions and Variants of
Dalal’s Quad Class

1. Compute R of line 7 almost once for each σ and µ.

2. Modify R of line 7 as Σ changes in line 11.

The total time for each R is O(|Σ|), in contrast to O(|Σ|2) used in Qsat. But, there will be a new factor
depending on the length of the longest clause.

Algorithm 15: Quadsat(Σ) [6]

1 Σ← RootSat(Σ);
2 repeat
3 if Σ = {} or Σ = ⊥ then
4 return Σ;

5 σ←next non-unit clause in Σ;
6 µ←next max-subclause in σ;
7 R(σ, µ)←RootSat(Σ ∪ ¬µ);
8 if R(σ, µ) = ⊥ or {} then
9 AddQ((σ, µ));

10 Σ← ProcessQ(Σ);
11 until no more σ and µ;
12 return Σ;

ProcessQ
The algorithm ProcessQ inserts the tuples in the queue one by one. We have the following.

1. R = {}, in this case the given CNF is satisfiable.

2. R = ⊥, in this case Σ is shortened.

3. If a clause is shortened, we get a new R.

4. Tuples in which R becomes ⊥ or {} are added to the queue.

Theorem 32. [6]
For any CNF, algorithm Qsat and QuadSat return the same CNF.

Finally, we have that:

Theorem 33. [6]
Let Σ be a CNF, the algorithm QuadSat halts in time O(|Σ|2k) where k is the length of the longest clause
in Σ.

4.1.4 Comparison between Quad and q-Horn [6]

Here we show that the classes Quad and q-Horn are incomparable by giving an example that belongs to
Quad but not to q-Horn and an example that belongs to q-Horn but not to Quad.

Example 28. [6]

1. For any k, let ΣK be a K-SAT instance with all clauses of length k built on the set of variables
{x1, . . . , xk}. For any ordering, ΣK ∈Quad but for any K > 3,ΣK <q-Horn.

2. Let Σ = {{p, q, r}, {¬p,¬s,¬t}, {a, b, c}, {¬a,¬d,¬e}}.
Σ is renamable Horn because it becomes Horn if p, q, a, b are renamed, so it belongs to q-Horn,
but Σ < Quad.

These two examples show that the Quad and q-Horn classes are incomparable.
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Algorithm 16: ProcessQ(Σ) [6]

1 while not EmptyQ() do
2 (λ, π)← RemoveQ();
3 if λ < Σ then
4 continue;

5 if R(λ, µ) = {} then
6 return {};

7 if R(λ, µ) , ⊥ then
8 continue;

9 Σ←RootSat((Σ \ ({λ}) ∪ {π});
10 p← λ \ π;
11 forall the R(σ, µ) (% ordered using ≺) do
12 if σ = λ then
13 R(σ, µ)← R(π, µ − {p})←RootSat(Σ ∪ ¬(µ − {p}));
14 else if R(σ, µ) has p in a clause ψ obtained from λ then

R(σ, µ)←RootSat((R(σ, µ) \ ({ψ}) ∪ ({ψ \ {p}}) ;
15 if R(σ, µ) = ⊥ or {} then
16 AddQ((σ, µ));

17 return Σ;

4.2 Quad Fragments and Orders

The main intuitions behind Definition 198 of the Quad class are summarized in the following remark.

Remark 21. Condition 1) is the base case: it checks whether Σ (closed under unit propagation) belongs
to Root, the polynomial base fragment.
Condition 2.b) expresses a recursive step where it is checked whether a simplified Σ belongs to Quad: a
positive answer is sufficient to show that Σ belongs to Quad since (i) one clause C of Σ is replaced by one
smaller clause C′ to form the simplified instance and (ii) C′ has been proved to be a (unit propagation)
logical consequence of Σ.
When satisfied, condition 2.a) allows Σ to be classified as belonging to Quad as a more constrained
instance (namely, Σ ∧ ¬C′ that thus contains the additional clauses given by ¬C′ before closure by unit
propagation) has been shown both satisfiable and belonging to Root, and consequently to Quad.

Quad depends on the considered ordering of literals. Different orderings can lead to different Quad
fragments, as shown by the following example.

Example 29. Let Σ = {{a, b, c, d, e}, {a, b, c, d,¬e}, {e, a, q, u}, {e, b, r, v}, {e, c, s,w}, {e, d, t, x}, {¬ f ,¬g},
{¬i,¬ j}}. If we consider the literals ordering ≺ defined by a ≺ b ≺ c ≺ e ≺ d ≺ (any
ordering about the other literals) then Σ ∈ Quad. Indeed, if we try to deduce the maximum
sub-clause {a, b, c, e} through unit propagation then the literal d will become true and we will
get the formula {{q, u}, {r, v}, {s,w}, {¬ f ,¬g}, {¬i,¬ j}}, which is binary and satisfiable. On the con-
trary, if we adopt the ordering a ≺ b ≺ c ≺ d ≺ e ≺ ¬e ≺ q ≺ u ≺ r ≺ v ≺

s ≺ w ≺ t ≺ x ≺ ¬ f ≺ ¬g ≺ ¬i ≺ ¬ j then Σ < Quad. Indeed, the first max-
sub-clause {a, b, c, d} of the first clause {a, b, c, d, e} can be deduced by unit propagation. Conse-
quently, by substituting {a, b, c, d, e} by {a, b, c, d}, we obtain Σ′ = {{a, b, c, d}, {a, b, c, d,¬e}, {e, a, q, u},
{e, b, r, v}, {e, c, s,w}, {e, d, t, x}, {¬ f ,¬g}, {¬i,¬ j}}. For all max-sub-clauses of the first clause {a, b, c, d}
the resulting formula does not belong to Root. Now, we process the second clause {a, b, c, d,¬e}.
Again, its first max-sub-clause {a, b, c, d} can be deduced by unit propagation leading to a new formula
Σ′′ = {{a, b, c, d}, {e, a, q, u}, {e, b, r, v}, {e, c, s,w}, {e, d, t, x}, {¬ f ,¬g}, {¬i,¬ j}}. One can easily verify that
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for any max-sub-clause c′ of any clause c ∈ Σ′′, the formula (Σ′′ ∧¬c′)∗ does not belong to Root. So Σ′′(
and hence Σ) does not belong to Quad.

4.3 About the Stability of Quad Fragments

In this section, we highlight properties of Quad fragments that play a key role in defining extensions and
variants of Quad. To the best of our knowledge, these properties of Quad have not been described so far.

Let us first analyse the stability of Quad with respect to variable assignment and clause removal.

Definition 200. Let X be a fragment of SAT and µ be an inference process that, given a set of clauses
∆, yields a corresponding set of clauses, noted µ(∆). X is stable with respect to µ if and only if for all
∆ ∈ X, we have that µ(∆) ∈ X.

Theorem 34. Quad (resp.
⋃

Quad) is neither stable with respect to clause elimination nor variable
assignment.

The following example suffices to prove this result.

Example 30. Assume Σ = {{a, b, c, d, e}, {a, b, g}, {a, b,¬ f }, {c, e, f }, {d, e, h}, {¬i,¬ j}, {¬l,¬k}} and
consider ≺ defined by a ≺ b ≺ c ≺ d ≺ e ≺ (with any ordering for the other literals). No-
tice that Σ ∈ Quad. Indeed, if we try to deduce the maximum sub-clause {a, b, c, d} through unit
propagation then the literal e will become true and we will get the formula {{¬i,¬ j}, {¬l,¬k}}, which
is binary and satisfiable. Consequently, Σ belongs to Quad. Let us consider the formula Σ′ =

{{a, b, g}, {a, b,¬ f }, {c, e, f }, {d, e, h}, {¬i,¬ j}, {¬l,¬k}} obtained by removing the first clause {a, b, c, d, e}
from Σ. The formula Σ′ does not belong to

⋃
Quad. This thus shows that neither Quad nor

⋃
Quad

are stable with respect to clause elimination. Now, if we assign a literal d to true, we obtain a new
formula Σ′′ = {{a, b, g}, {a, b,¬ f }, {c, e, f }, {¬i,¬ j}, {¬l,¬k}} which does not belong to

⋃
Quad, showing

that neither Quad nor
⋃

Quad are stable with respect to variable assignment.

Remark 22. The violation of the stability property by clause elimination and literal assignment is not
surprising, since the Root class combines several tractable classes (binary clauses, formulas with no
positive or no negative clauses) which are founded on some syntactical grounds. In the following, we
show that even if the clause to be eliminated is redundant (either in the full case or redundant through
UP, as UP is the cornerstone concept of Quad), the remaining formula might cease to belong to Quad.

The following theorem concerns the stability with respect to elimination of redundant clauses.

Theorem 35. Quad (resp.
⋃

Quad) is not stable with respect to elimination of redundant clauses

Proof. The proof follows from Example 30. As we can notice, the removed clause {a, b, c, d, e} from Σ

is UP-redundant in Σ. �

From the above properties of Quad and
⋃

Quad, it follows that adding within Σ clauses that are
actually redundant in Σ can lead to a logically equivalent set of clauses Σ′ that belongs to

⋃
Quad

whereas Σ does not itself belong to
⋃

Quad. Among these redundant clauses, of particular interest are
those that can be derived by resolution (namely, resolvents).

Now, obviously, adding any redundant clause within one Quad fragment does not guarantee that the
resulting set of clauses belongs to

⋃
Quad.

All these results show that enhancing Quad by means of considering logically equivalent sets of
clauses or through processes that consider instantiated formulas are more prone to deliver variant poly-
nomial fragments of SAT than extensions of Quad.

4.4 Various Possible Variants

Quad is based on several parameters that we can try to relax while keeping the polynomial-time recog-
nition and satisfiability-testing properties.

94



4.5. Ext-Quad fragments

4.4.1 Enriching the Root fragment

The Root class can be enriched with other known polynomial fragments. Obviously, when non linear-
time recognizable and solvable fragments are added, this entails an increase in the polynomial worst-
case complexity of recognition and satisfiability-checking procedures, due to the Quad handling schema.
Note that Quad already captures several well-known polynomial fragments of SAT that are not fragments
of Root, like the Horn one. Especially, it seems possible to enrich Root with variables renaming features,
as well as for example Tovey’s class [9] and its variants [115]. We do not explore these paths in this
thesis.

4.4.2 Using additional polynomial deductive paradigms

One key feature of Quad is closure by Unit Propagation which is also a linear time-process. Likewise,
adding or switching to other polynomial-time limited deduction procedures would allow the polynomial
feature to be kept. As a case study, we shall compare

⋃
Quad with the fragments obtained by replac-

ing unit propagation with restricted forms of resolution like bounded-resolution which has long been
known useful in preprocessing steps of SAT solvers (see early works by [116, 117]). We also investi-
gate the extent to which filtering clauses that are unit-propagation redundant ones leads to different SAT
fragments.

4.4.3 Relaxing the ubiquitous use of a unique total ordering between clauses

Another question is whether or not the choice of founding Quad only on total orderings between all
literals prevents or not some polynomial instances from belonging to

⋃
Quad. Such a total ordering

plays a twofold role in the second point of the definition for Quad: it rank-orders both clauses C in Σ∗

and the maximum sub-clauses of C. Actually, we shall show that decoupling these two orderings allows
more instances to be recognized and solved. We start with this question in the next section.

4.5 Ext-Quad fragments

The main idea is to decouple

• the total ordering of clauses that is used in the second item of the definition of Quad to examine
clauses in Σ∗,

• from the ordering that is used to rank-order the maximal sub-clauses of C′ in the same item of the
definition of Quad. Actually, we allow this latter ordering to differ for the various clauses C′.

Accordingly, the definition of the new fragments, called Ext-Quad (for Extended Quad), will make
use of additional total orderings between sub-clauses that are specific to each clause C′. We note such
an ordering ≺C′ . We define Ext-Quad as follows.

Definition 201. (Ext-Quad)
Let ≺ be a total ordering between clauses of Σ. For each clause C, let ≺C be a total ordering between
the maximum sub-clauses of C.
A formula Σ is in class Ext-Quad if and only if:

1. Σ∗ belongs to Root, or

2. for the first (with respect to ≺C) maximum sub-clause C′ of the first (with respect to ≺) clause
C ∈ Σ∗ for which (Σ ∧ ¬C′)∗ is in class Root:

(a) either (Σ ∧ ¬C′)∗ is satisfiable, or

(b) the formula (Σ \ {C}) ∪ {C′} is in class Ext-Quad.

The following example gives an instance that belongs to Ext-Quad.
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Example 31.
Let Σ = {{p, q, r}, {p, q,¬r}, {¬p,¬q,¬r}}. Since Σ∗ = Σ and Σ < Root, we have that Σ∗ < Root. Consider
the total ordering ≺ defined by {p, q, r} ≺ {p, q,¬r} ≺ {¬p,¬q,¬r} on the clauses of Σ. Consider the
following total orderings on the max-sub-clauses of the clauses of Σ and of some of their sub-clauses:

• ≺{p,q,r} is defined by {p, q} ≺{p,q,r} {p, r} ≺{p,q,r} {q, r}

• ≺{p,q,¬r} is defined by {p, q} ≺{p,q,¬r} {p,¬r} ≺{p,q,¬r} {q,¬r}

• ≺{¬p,¬q,¬r} is defined by {¬p,¬q} ≺{¬p,¬q,¬r} {¬p,¬r} ≺{¬p,¬q,¬r} {¬q,¬r}

• ≺{p,q} is defined by {p} ≺{p,q} {q}

For the first clause C = {p, q, r} and its first max-sub-clause C′ = {p, q}, we have that (Σ∧¬C′)∗ = {⊥} ∈

Root. We can thus now consider (Σ \ {C})∪{C′} = {{p, q}, {p, q,¬r}, {¬p,¬q,¬r}}. Consider the ordering
{p, q} ≺ {p, q,¬r} ≺ {¬p,¬q,¬r}. When we take the first clause C1 = {p, q} according to ≺, and its first
max-sub-clause C′1 = {p}, we have that (((Σ \ {C}) ∪ {C′}) ∧ ¬C′1)∗ = {}. Hence, Σ ∈ Ext-Quad.

Notation 16. Let us note
⋃

Ext-Quad the set-theoretic union of all Ext-Quad fragments obtained by
considering all possible orderings of clauses and sub-clauses.

The following result shows that
⋃

Ext-Quad strictly extends
⋃

Quad: some instances of Ext-Quad
are never captured by Quad, no matter the ordering between literals used for Quad.

Theorem 36.⋃
Quad ⊂

⋃
Ext-Quad

Proof. It is easy to see that
⋃

Quad ⊆
⋃

Ext-Quad. Indeed, let Σ be a CNF that belongs to Quad with
respect to a total ordering ≺ on clauses. ≺ can also be used as a unique ordering between sub-clauses in
the definition of Ext-Quad. Hence, Σ also belongs to at least one Ext-Quad fragment.

Let us show that the converse does not hold by exhibiting one Σ that belongs to
⋃

Ext-
Quad but to no Quad fragment. To this end, we consider the following formula Σ =

{{a, b, c, d}, {a, b}, {¬a, b}, {c, e, f }, {d, g, h}, {¬i,¬ j}, {¬k,¬l}}. It is easy to show that Σ belongs to Ext-
Quad for the ordering of clauses {a, b, c, d} ≺ {a, b} ≺ {¬a, b} ≺ {c, e, f } ≺ {d, g, h} ≺ {¬i,¬ j} ≺ {¬k,¬l}
and the constraint that the max-sub-clause {a, c, d} of {a, b, c, d} precedes the other max-sub-clauses of
{a, b, c, d}. Indeed, (Σ∧{a, c, d})∗ = {{e, f }, {g, h}, {¬i,¬ j}, {¬k,¬l}}}, which belongs to Root and is satisfi-
able; thus, Σ belongs to Ext-Quad for this ordering and Σ ∈

⋃
Ext-Quad. But for any ordering of literals,

the clauses {c, e, f }, {d, g, h}, {¬i,¬ j}, {¬k,¬l}} will not change and the clause {a, b} always precedes the
clause {a, b, c, d} (since {a, b} ⊂ {a, b, c, d}). We have two cases:

1. {a, b} ≺ {¬a, b}

2. {¬a, b} ≺ {a, b}

In the first (resp. second) case, we have just for the max-sub-clause {b} of the clause {a, b} (resp.
{¬a, b}) that (Σ ∧ {b})∗ belongs to Root and is unsatisfiable, so {a, b} (resp. {¬a, b}) will change
to {b} and ({{a, b, c, d}, {b}, {¬a, b}, {c, e, f }, {d, g, h}, {¬i,¬ j}, {¬k,¬l}})∗ = {{c, e, f }, {d, g, h}, {¬i,¬ j},
{¬k,¬l}} will never belong to Quad (resp. ({{a, b, c, d}, {a, b}, {b}, {c, e, f }, {d, g, h}, {¬i,¬ j}, {¬k,¬l}})∗ =

{{c, e, f }, {d, g, h}, {¬i,¬ j}, {¬k,¬l}} will never belong to Quad). Thus, Σ <
⋃

Quad �

Moreover, the use of (additional) total orderings of sub-clauses does not alter the complexity results
obtained for Quad in [6]. It is easy to show that,

Theorem 37. The membership and satisfiability of a CNF Σ of size n belonging to a given Ext-Quad
fragment can be determined in O(|Σ|3). Moreover, a formula Σ in Ext-Quad can be both recognized and
solved in O(d × |Σ|2) time, where d is the size of the longest clause in Σ.
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Proof. 1. Since the number of different R’s that are created by algorithm 15 are at most |Σ|, we have
that in line 13 of algorithm 16, m − 1 new R’s are created for each replacement of a clause λ of
length m by a clause π in line 9 of algorithm 16. And since each clause can be shortened to a unit
clause in the worst case, we have that at most |Σ|(d−1)

2 new R’s are created in this way.

2. From 1, the total number of created R’s is |Σ|(d+1)
2 .

3. From 2 and since the the time of creating each of R’s is at most O(|Σ|), we have that the total time
for creating R’s is O(|Σ|2d).

4. Also at most |Σ|(d+1)
2 tuples are added to the queue with time at most O(|Σ|dlog|Σ|) to maintain the

queue. And since in each step where Σ is changed in line 9 of algorithm 16 we have that all other
R’s are accessed, so the total time in this case is O(|Σ|2).

By accumulating all the times, we get that the total time is O(d × |Σ|2) where d is the size of the
longest clause in Σ. So in the worst case the total time is O(|Σ|3). �

In the next section, we turn to another variant of Quad obtained by replacing unit propagation by
bounded resolution.

4.6 BR(k)-Quad

In this section, we investigate the fragments of SAT that are obtained when saturation by unit propagation
in the definition of Quad is replaced by forms of saturation by bounded resolution. Bounded resolution
was introduced in [118]. Saturation by k-bounded resolution consists in adding all resolvents of size less
or equal to k. For example, if Σ contains both clauses a∨b∨¬c∨d∨ e and a∨b∨ c∨ e then a∨b∨d∨ e
is a resolvent of size 4. Saturating Σ by 4-bounded resolution will conduct a ∨ b ∨ d ∨ e to belong
to the resulting set of clauses. The bound k, called width, is considered as an important complexity
measure for resolution refutations [119, 120]. In [119], the authors give a general relationship between
the width and the length of a refutation, reducing the problem of giving lower bounds on the length
to that of giving lower bounds on the width. More generally, restricting resolution to the derivation
of size-bounded resolvents guarantees polynomial complexity. Obviously, such restriction leads to an
incomplete resolution proof system.

Several forms of bounded resolution can be considered. These different forms depend on the way
according to which the size of the generated resolvents is bounded. One can for example set the size k
(bound) of the resolvent between Ci and C j to max(|Ci|, |C j|) or to the size of the longest clause of Σ. In
these two cases, unit resolution can be interpreted as a special case of bounded resolution.

In our bounded resolution variant, the bound k is set to the size of the longest clause of Σ. Moreover,
in our definition of saturation by bounded resolution, subsumed clauses do not take part in the resulting
set of clauses. The definition is as follows.

Definition 202. Let k be the size of the longest clause of Σ. Σbr represents the formula Σ after closing it
by bounded resolution. It is defined recursively as follows:

1. Σbr = Σ if ∀Ci = (x ∨ α) ∈ Σ, ∀C j = (¬x ∨ β) ∈ Σ, R = η[x,Ci,C j] ∈ Σ or ∃ C ∈ Σ s.t. C subsumes
R.

2. ⊥ ∈ Σbr if Σ contains two opposite unit clauses {x} and {¬x},

3. otherwise, Σbr = ({R}∪{C ∈ Σ|R * C}) where R is not tautological and is an unsubsumed resolvent
between two clauses of Σ and |R| ≤ k.

The following definition gives the consequence modulo bounded resolution of a clause from a CNF.

Definition 203. Let Σ be a CNF formula. A clause C is a consequence modulo bounded resolution of Σ,
noted Σ |=BR C, if and only if ⊥ ∈ (Σ ∧C)br
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Proposition 1. If Σ |=UP C then Σ |=BR C.

Proof. It follows from our definition of bounded resolution and of our setting of the bound k to the size
of longest clause of the formula. Indeed, UP closure is a special case of BR closure. �

Remark 23. Not surprisingly, in [118], it is shown that k-bounded resolution is not complete for refu-
tation because k-bounded refutation can be achieved in a polynomial time. If a formula can be refuted
by k-bounded resolution then refutation needs at most O(nk) steps of resolution, where n is the number
of variables of the CNF formula [121]. This result is direct because no more than nk different resolvents
can be generated.

Let us now define our variant of Quad using bounded resolution, noted BR(k)-Quad.

Definition 204. (BR(k)-Quad)
Let ≺ be a total ordering between literals of L.
A formula Σ is in class BR(k)-Quad if and only if

1. Σbr belongs to Root, or

2. for the first maximum sub-clause C′ of the first clause C ∈ Σbr for which (Σ∧C′)br is in class Root:

(a) either (Σ ∧C′)br is satisfiable, or

(b) the formula (Σ \ {C}) ∪ {C′} is in class BR(k)-Quad.

Now, let us show that
⋃

Quad 1
⋃

BR(k)-Quad and
⋃

BR(k)-Quad 1
⋃

Quad. Firstly, the follow-
ing example shows that there exists Σ that does not belong to

⋃
Quad but that belongs to

⋃
BR(k)-Quad.

Example 32. Let Σ =

{{a, b, c}, {¬a, d, e}, {¬d,¬a, c},
{¬e, d, i}, {¬i,¬a}, {¬d,¬e}, {a′, b′, c′}, {¬a′, d′, e′},
{¬d′,¬a′, c′}, {¬e′, d′, i′}, {¬i′,¬a′}, {¬d′,¬e′}}.

After 3-bounded resolution on Σ, we obtain Σbr = {{¬i,¬a}, {¬d,¬e}, {¬e, i}, {¬a, d}, {¬a, c}, {¬e,¬a},
{b, c}, {¬i′,¬a′}, {¬d′,¬e′}, {¬e′, i′}, {¬a′, d′}, {¬a′, c′},
{¬e′,¬a′}, {b′, c′}}

All clauses of Σbr are binary, so Σbr ∈ Root and Σ ∈
⋃

BR(3)-Quad (for any order).
Notice that Σ contains two similar sets of clauses with two disjoint sets of variables. Hence for any

ordering, there is no max-sub-clause C′ such that (Σ ∧ C′)∗ is in class Root, because one of these two
sets of clauses will remain unchanged and this set does not belong to Root and there does not exist any
max-sub-clause such that (Σ ∧C′)∗ is in Root. Consequently, Σ does not belong to

⋃
Quad.

The next example shows that there exists Σ that belongs to
⋃

Quad but that does not belong to⋃
BR(k)-Quad.

Example 33. Let Σ =

{{¬w,¬x,¬y,¬z}, {¬d,¬e,¬ f ,¬g}, {¬a, b}, {a, b}}
First, let us show that Σ <

⋃
BR(k)-Quad.

For any value of k ≥ 1, we have that Σbr = {{¬w,¬x,¬y,¬z}, {¬d,¬e,¬ f ,¬g}, {b}}, which does not
belong to Root. Moreover, for any ordering of literals, there does not exist any max-sub-clause C′ such
that (Σ ∧C′)br belongs to Root. Consequently Σ does not belong to

⋃
BR(k)-Quad (for any k).

It is easy to prove that for any ordering where b is the highest literal, Σ belongs to
⋃

Quad. Σ∗ = Σ

is not in Root, therefore assume that the first max-sub-clause is {¬a} issued from {¬a, b}. We have that
(Σ ∧ (a))∗ has no positive clause and thus belongs to Root. Consequently, Σ belongs to

⋃
Quad.

These two last examples show that
⋃

Quad and
⋃

BR(k)-Quad are incomparable in the general case.
According to the complexity of bounded resolution, it is easy to show that:
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Theorem 38. The satisfiability and the membership of a CNF Σ to a given BR(k)-Quad fragment can be
determined in O(max(d, k) × (|Σ| + knk)2) time, where n is the number of variables of Σ and d is the size
of the longest clause in Σ.

Proof. The complexity of checking the satisfiability and the membership to BR(k)-Quad follows from
the complexity of both Quad and bounded resolution. Indeed, the complexity of both checking the
satisfiability and the membership of a formula Σ to Quad is in O(d × |Σ|2). As the maximum number of
resolvents that can be generated by bounded resolution is nk where n is the number of variables of Σ, the
number of clauses of Σ can thus be increased with an additional nk clauses of size k, leading to a formula
of size |Σ| + knk. Taking into account this increase of the size of Σ and the complexity of the bounded
resolution, the following worst case complexity is thus O(max(d, k) × (|Σ| + knk)2). �
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Chapter5
UP-based polynomial fragments of SAT

This chapter explores several polynomial fragments of SAT that are based on the unit propagation (UP)
mechanism. In this chapter we consider other possible uses of UP to detect polynomial SAT instances.
As a case study, we consider UP-based reductions of SAT instances into Horn instances [122, 123].
Noticeably, other polynomial classes could be selected as alternative target classes.
Actually, we combine several reduction processes. First, we compare two existing polynomial fragments
based on UP: namely, Quad [6] and UP-Horn [10]. We answer an open question about the connections
between these two classes: we show that UP-Horn and some other UP-based variants are strict subclasses
of

⋃
Quad, where

⋃
Quad is the union of all Quad classes obtained by investigating all possible orderings

of clauses.
Then, following [124], we exploit the very general paradigm consisting of the elimination of redundant
clauses that can be detected thanks to UP and that, at the same time, do not belong to the targeted
polynomial class.
Interestingly, many benchmarks from the DIMACS repository [11] and from SAT competitions [7] are
shown to belong to UP-Horn. This result can be interpreted as a step towards the integration of theoretical
investigations about tractable fragments within practical SAT solving.

5.1 UP-Horn (UP-reverse-Horn, UP-bin) vs. Quad

Firstly, we define UP-T clause and UP-T class where T is a tractable class.
Since our goal is to reduce UP-T instance to T instance by using the following approach:
We replace a clause C in UP-T instance by a clause C′ in T instance (a T clause, see definition 205)
where C′ ⊆ C and Σ �∗ C′.
So, we will focus on tractable classes that are closed under union (see definition 3.6.3).

Definition 205. (T clause)
Let T be a closed under union tractable class and Σ ∈T be a CNF. Let C be a clause of Σ. C is called a T
clause of Σ (or simply a T clause).

Definition 206. (UP-T clause)
Let T be a closed under union tractable class and Σ ∈T be a CNF. Let C be a clause of Σ. C is called a
UP-T clause of Σ if and only if there exists a T clause C′ ⊆ C s.t. Σ �∗ C′.

Definition 207. (UP-T class)
UP-T class is the class of CNFs that contain clauses that are T or UP-T.

We have the following examples: since Horn class, reverse-Horn class (see section 3.3.2), 2SAT
class (see section 3.3.1) are closed under union tractable classes, so we have the following special cases
of definitions 206 and 207.

Example 34. (Some examples of UP-T classes).

1. (UP-Horn clause, UP-Horn class).
Let C = {¬n1, . . . ,¬nr, p1, . . . , ps}, with r ≥ 0 and s ≥ 1, be a clause of Σ. C is called a UP-Horn
clause of Σ if and only if there exists a Horn clause C′ ⊆ C s.t. Σ �∗ C′.
UP-Horn class is the class of CNFs that contain clauses that are Horn or UP-Horn.
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2. (UP-reverse-Horn clause, UP-reverse-Horn class).
Let C = {¬n1, . . . ,¬nr, p1, . . . , ps}, with r ≥ 1 and s ≥ 0, be a clause of Σ. C is called a UP-
reverse-Horn clause of Σ if and only if there exists a reverse-Horn clause C′ ⊆ C s.t. Σ �∗ C′.
UP-reverse-Horn class is the class of CNFs that contain clauses that are reverse-Horn or UP-
reverse-Horn.

3. (UP-bin clause, UP-bin class).
Let C be a clause of Σ. C is called a UP-bin clause of Σ if and only if there exists a binary clause
C′ ⊆ C s.t. Σ �∗ C′.
UP-bin class is the class of CNFs that contain clauses that are binary or UP-bin.

Remark 24. We can also define UP-Tovey clause and UP-Tovey class (see section 6.2) in spite of Tovey
class is not closed under union (it is just closed under disjoint union, see definition 175) but we can use
our approach on Tovey class because the definition of Tovey class depends on the occurrences of the
variables, and the occurrences of the variables will not increase by using our approach.

We study these four examples of UP-T classes in the current and forthcoming chapters.

Let us now turn our attention to UP-Horn (resp., UP-reverse-Horn, UP-bin) vs. Quad. In [10], it is
shown that these two SAT fragments are incomparable due to the fact that Quad depends on a selected
ordering of clauses while UP-Horn (resp., UP-reverseHorn, UP-bin) does not depend on any ordering of
clauses. In this section, we answer a remaining open question: "are UP-Horn (resp., UP-reverseHorn,
UP-bin) and Quad equivalent, provided that Quad is considered on all possible orderings of clauses?".
We show that UP-Horn (resp., UP-reverseHorn, UP-bin) is strictly included in

⋃
Quad.

Theorem 39.

A) UP-Horn ⊂
⋃

Quad

B) UP-reverse-Horn ⊂
⋃

Quad

C) UP-bin ⊂
⋃

Quad.

Proof. First of all, let us prove the following lemma.

Property 74. Let Σ be a CNF and C be a sub-clause of D s.t. D ∈ Σ and C ∈ Σ∗.

1. If Σ ∧ ¬(D \C) �∗ ⊥ then ⊥ ∈ Σ∗.

2. If Σ ∧ ¬(D \C) 2∗ ⊥ and F ⊆ D is a clause s.t. Σ ∧ ¬F �∗ ⊥
then Σ ∧ ¬(F ∩C) �∗ ⊥.

Proof of Lemma 74.

1. Let D = {a1, a2, . . . , an} and C = {a1, a2, . . . , ar} with r 6 n. Σ ∧ ¬(D \ C) �∗ ⊥, can be written as
follows:

Σ ∧
∧

j∈{r+1,...,n}

{¬a j} �
∗ ⊥ (5.1)

As C is a sub-clause of D s.t. D ∈ Σ and C ∈ Σ∗, C is then obtained from D by unit propagation
on Σ. This means that all literals a j with j ∈ {r + 1, . . . , n} are already propagated from Σ. In
consequence, from (5.1) we have Σ �∗ ⊥, in other words ⊥ ∈ Σ∗.

2. Σ∧¬(D \C) 2∗ ⊥ means that ⊥ < Σ∗ and for each sub-clause E of (D \C), Σ∧¬E 2∗ ⊥. If F ⊆ D
then F \ (F ∩C) ⊆ (D \C), therefore

Σ ∧ ¬(F \ (F ∩C)) 2∗ ⊥ (5.2)
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Assume that Σ ∧ ¬(F ∩ C) 2∗ ⊥, with (5.2) we obtain that Σ ∧ ¬F 2∗ ⊥. Indeed Σ itself is able to
unit propagate anything in D \ C (since C was obtained by UP from D) and we do not derive any
contradiction inside D \C. Also, we do not derive any contradiction by UP from Σ∧¬(F ∩C) and
so we cannot derive any contradiction by UP from Σ ∧ ¬F: this contradicts the initial hypothesis.

�

Now, let us prove the first assertion, namely A).
Assume that Σ is UP-Horn and Σ <

⋃
Quad. We assume also that Σ∗ contains positive clauses, because

otherwise Σ∗ ∈ Root and thus Σ ∈
⋃

Quad. Let P a positive clause of Σ∗. Let M a clause of Σ s.t. P ⊆ M.
P is obtained from M by unit propagation.

• If Σ ∧ ¬(M \ P) �∗ ⊥ then ⊥ ∈ Σ∗ (by Lemma 74.1) and hence Σ ∈
⋃

Quad.

• If Σ∧¬(M \ P) 2∗ ⊥ then ∀E ⊆ (M \ P), Σ∧¬E 2∗ ⊥. Σ is UP-Horn, so there exists a Horn clause
H s.t. H ⊂ M and Σ∧¬H �∗ ⊥. Therefore, H * (M \P) which means that H ∩P , ∅. H is a Horn
clause and P is a positive one, in consequence H ∩ P = {p}, i.e., H \ {p} ⊂ (M \ P). By Lemma
74.2 we have: Σ ∧ {¬p} �∗ ⊥. So, for each positive clause Pi for i = 1 . . . n, there is a variable pi

s.t.
Σ ∧ {¬pi} �

∗ ⊥ (5.3)

Now, let C
′

1,C
′

2, . . . ,C
′

n′
be the clauses of Σ∗ s.t. their negative literals are only formed by some

of the ¬pi’s. As previously, let Di be a clause of Σ s.t. C′i ⊆ Di (i ∈ {1, . . . , n′}). Once again, we
assume that Σ∧¬(Di \C′i ) 2

∗ ⊥ because Lemma 74.1 would directly entail that Σ belongs to Root
otherwise. So, we have:

∀E′ ⊆ (Di \C′i ),Σ ∧ ¬E′ 2∗ ⊥ (5.4)

And we can apply the same reasoning: Σ is UP-Horn, thus ∃ H′ ⊂ Di s.t. H′ is Horn and Σ∧¬H′ �∗

⊥ and since H′ * Di \ C′i , we also have H′ ∩ C′i , ∅. As H′ is a Horn clause, two cases are to be
distinguished (note that (H′ \ (H′ ∩C′i )) ⊆ Di and consequently (H′ \ (H′ ∩C′i )) ⊂ Di \C′i ):

1. H′ ∩ C′i = {¬pi1 ,¬pi2 , . . . ,¬pim} has no positive literal. Since Σ ∧ ¬H′ �∗ ⊥ and (5.4), we
have Σ ∧ ¬{¬pi1 ,¬pi2 , . . . ,¬pim} �

∗ ⊥, i.e., Σ ∧ (pi1) ∧ (pi2) ∧ · · · ∧ (pim) �∗ ⊥ which means
that there exists a sub-clause {¬pi1 ,¬pi2 , . . . , ¬pim} of Σ s.t. (Σ ∧ ¬{¬pi1 ,¬pi2 , . . . ,¬pim})

∗

contains an empty clause and so belongs to Root, which entails that Σ ∈
⋃

Quad.

2. H′ ∩ C′i = {p′j,¬pi1 ,¬pi2 , . . . ,¬pim} contains one positive literal. Thanks to (5.3), (5.4) and
Σ ∧ ¬H′ �∗ ⊥, we have:

Σ ∧ {¬p′j} �
∗ ⊥ (5.5)

Similarly, we can perform the same reasoning with C′′1 ,C
′′
2 , . . . ,C

′′
n′′ the clauses of Σ∗ s.t.

their negative literals are only formed by some of ¬pi and ¬p′j, we obtain Σ ∧ {¬p′′k } �
∗ ⊥,

and so on.
Now, if we take the total order s.t. all pi precede all p′j which precede all p′′k and so on and
all of these literals precede all the other ones of Σ (i.e., p1 < p2 < · · · < pn < p′1 < · · · <
p′n′ < p′′1 < · · · < p′′n′′ < · · · < p′k1 < · · · < p′k

n′k
< . . . ), we can apply Dalal’s procedure and

it is possible to remove all pi, all p′j, all p′′k and so on. Thus the clauses that contain these
positive literals are also removed. The same reasoning is applied until the resulting formula
does not contain any positive clause; this latter formula belongs to Root, and consequently Σ

is in
⋃

Quad.

The second assertion, namely B), can be proved in a similar way.

The last assertion about UP-bin can be proved as follows.
Let Σ a CNF in UP-bin. For each non-binary clause C = {p1, p2, . . . , pn} of Σ, we have Σ �∗ {pi, p j}

with {i, j} ⊆ {1, . . . , n} (because Σ ∈ UP-bin) which means Σ � (Σ \ {C}) ∪ {pi, p j}, i.e., Σ can be replaced
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by (Σ\{C})∪{pi, p j}. When this transformation is iterated for each non-binary clause, we obtain a binary
formula, which is in Root, and thus Σ is in

⋃
Quad.

To show that the inclusion is strict, we give the following example.

Example 35. Consider the following CNF: Σ = {{a, b, c}, {¬d,¬e, f }}. It is easy to show that Σ belongs
to Quad but does neither belong to UP-Horn, nor UP-reverse-Horn nor UP-bin.

First, Σ belongs to Quad. Indeed, since Σ∗ = Σ does not contain any negative clause, Σ∗ ∈ Root and
thus Σ ∈ Quad. Σ is not in UP-Horn because (Σ ∧ ¬a)∗ = {{b, c}, {¬d,¬e, f }} 2∗ ⊥ and similar results
hold for (Σ ∧ ¬b)∗ and (Σ ∧ ¬c)∗. Σ is not in UP-reverse-Horn because none of {¬d}, {¬e}, { f }, {¬d, f }
and {¬e, f } follows from Σ through �∗. Σ is not in U-bin. Indeed, no binary sub-clauses of {a, b, c} and
{¬d,¬e, f } can be derived from Σ according to �∗.

�

5.2 Extending the range of UP-based reductions

As it is well-known UP-redundant clauses (see definition 83) can be safely removed from Σ [124]. Let us
now add two properties, leading to two additional reduction operators, namely UP-NRes and UP-PRes,
respectively.

Property 75. Let C = {¬n1, . . . ,¬nn, p1, . . . , pp} be a clause of Σ.
If Σ |=∗ {¬n1, . . . ,¬nn} or
(∃ pi ∈ C s.t. Σ |=∗ {¬n1, . . . ,¬nn, pi} and Σ |=∗ {¬n1, . . . ,¬nn,¬pi}),
then Σ |= {¬n1, . . . ,¬nn}.

Definition 208 (UP-NRes(C)). When a clause C = {¬n1, . . . ,¬nn, p1, . . . , pp} of Σ satisfies Property 75,
UP-NRes(C) is defined as {¬n1, . . . ,¬nn}.

Property 76. Let C = {¬n1, . . . ,¬nn, p1, . . . , pp} be a clause of Σ.
If ∃ pi ∈ C s.t. Σ 6|=∗ {¬n1, . . . ,¬nn, pi} and Σ |=∗ {¬n1, . . . ,¬nn,¬pi},
then Σ |=∗ {¬n1, . . . ,¬nn, p1, . . . , pi−1, pi+1, . . . , pp}.

Definition 209 (UP-PRes(C)). When a clause C = {¬n1, . . . ,¬nn, p1, . . . , pp} of Σ sat-
isfies Property 76 with respect to the literals pi to p j, UP-PRes(C) is defined as
{¬n1, . . . ,¬nn, p1, . . . , pi−1, p j+1, . . . , pp}.

The following remark shows how the previous properties are used to recognize SAT instances that
can be reduced in polynomial time into Horn instances.

Remark 25. Algorithm 17 uses the previous properties to recognize SAT instances that can be reduced
in polynomial time into Horn instances.
It works as follows.

1. All Horn clauses recorded in Σ′.

2. All remaining clauses C are checked one by one.

3. By Property 75, when the negative part of C is UP-derivable from Σ, this negative part is a new
Horn clause and so it is recorded in Σ′ .

4. Otherwise, the second part of Property 75 is checked in lines 8 and 9.

5. While Property 76 is verified in lines 8 to 11.

6. To obtain UP-PRes(C), the tests are down in lines 12 to 14. It inserts the smallest clause (with
respect to its number of positive literals) within Σ′.

7. The function RedundancyUP is called in line 15 to get rid of UP-redundant clauses as described
in [124].

8. By using the function isHorn, the initial formula Σ is reduced into Horn formula (line 16).
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Algorithm 17: isHorn-by-extendedUP
Input: a CNF Σ

Output: true if Σ is UP-Horn; false otherwise

1 Σ′ ← {C|C ∈ Σ s.t. isHorn({C})};
2 foreach C ∈ Σ s.t. C = {¬n1, . . . ,¬nn, p1, . . . , pp}, n ≥ 0 and p > 1 do
3 if (Σ |=∗ {¬n1, . . . ,¬nn}) then Σ′ ← Σ′ ∪ {{¬n1, . . . ,¬nn}};
4 else
5 Σ′′ ← ∅;
6 C′ ← C;
7 forall the pi ∈ C do
8 if (Σ |=∗ {¬n1, . . . ,¬nn, pi}) then
9 if (Σ |=∗ {¬n1, . . . ,¬nn,¬pi}) then Σ′ ← Σ′ ∪ {{¬n1, . . . ,¬nn}} ;

10 else Σ′′ ← Σ′′ ∪ {{¬n1, . . . ,¬nn, pi}};

11 else if (Σ |=∗ {¬n1, . . . ,¬nn,¬pi}) then C′ ← C′ \ {pi};

12 if ({¬n1, . . . ,¬nn} 1 Σ′) then
13 if (Σ′′ = ∅) then Σ′ ← Σ′ ∪ {C′};
14 else Σ′ ← Σ′ ∪ Σ′′;

15 Σ′ ← RedundancyUP(Σ′) ;
16 return isHorn (Σ′);

Function RedundancyUP
Input: a CNF Σ

Output: an UP-irredundant SAT instance Γ equivalent to Σ with respect to satisfiability

1 Γ←− Σ ;
2 foreach C ∈ Σ sorted according to their decreasing sizes do
3 if (Γ \C �∗ C) then Γ←− Γ \ {C} ;

4 return Γ;

Function isHorn
Input: a CNF Σ

Output: TRUE if Σ is a Horn formula; FALSE otherwise

1 foreach C ∈ Σ do
2 if (it exists more than one positive literal in C) then return FALSE ;

3 return TRUE ;

Implementation and experimentation

To give the practical interest of algorithm 17, a variant of algorithm 17 is implemented. The implemen-
tation has the following aspects:

1. The reduced CNF depends on the order according to which the clauses are considered.

2. The program is iterated until no new Horn clause is produced (to perform all possible simplifi-
cations) and it runs on various benchmarks from the DIMACS repository [11] and from the SAT
competitions (www.satcompetition.org).

3. All experimentations have been conducted on an Intel(R) Xeon(TM) CPU 3.00 GHz with 2GB of
memory under Linux CentOS release 4.1.

We get the following interesting results:
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1. Some instances were reduced to polynomial-time ones, running the program just once. In Table
5.1, all instances that could be reduced to instances belonging to the Horn class are given: 99
instances reduced to instances of the Horn class have been found within (almost) 1600 tested
instances. For each instance, its name, its size (#var. and #cla.), the number of propagations (#UP)
and the time spent in seconds to reduce the instance to UP-Horn are given. When the program is
iterated until no new Horn clause is produced, 28 additional instances are reduced to Horn. They
are given in Table 5.2 where “removed cla” (resp. “removed var”) represents the ratio (in percents)
of clauses (resp. variables) removed by the method and where “#lit” represents the total number
of literals that have been removed.

2. Even when this pre-treatment does not conduct the instance to be reduced into a polynomial-
time one, the global size of the instance is often decreased in a significant manner, whereas its
polynomial subpart is increased accordingly.

To give its interest as pre-treatment, a combination of the pre-treatment with Minisat are compared. We
get the following results:

1. In Table 5.3, the time required to solve instances using Minisat [125] with the time spent by a
combination of the pre-treatment with Minisat are compared. In this table, the columns “Minisat”
represent the time consumed by Minisat to solve the original instance (“original”) and the sim-
plified one (“simplified”); and the columns “%profit” represents the gain (in percents) obtained
by the pre-treatment when the simplification time is taken into account either together with the
satisfiability checking time (“total”) or not (“partial”).

2. As examples, we have the following:
Minisat required 204.54 seconds to solve IBM_05_SAT_dat.k100. The simplification of this
instance by means of our process took 133.17 seconds: it removed more than 40000 variables
(21% of the total number of variables) and more than 282000 clauses (27% of the total number of
clauses). This simplified benchmark was solved by Minisat in 28.02 seconds, only. If we also take
the time spent for simplification into account, the global time to simplify and solve the benchmark
is thus 161.19 seconds, to be compared with the 240.54 seconds needed by Minisat to solve the
initial instance.

3. In general, the time spent to simplify the instance is largely compensated by the saved time in
the solving step. Most often, simplifying SAT instances by means of our pre-processing allows
computing time to be saved, globally.

4. In rare situations, the simplified benchmark is more time-consuming to solve than the original one
(e.g., ip50) or the spent time to simplify is not compensated during the subsequent solving step
(e.g., fifo8_100).
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CNF instances # var. # cla. #UP time (s.) CNF instances # var. # cla. #UP time (s.)
aim-100-1_6-yes1-4 100 160 179 0 IBM_FV_2004_rule_batch. . .
aim-100-2_0-yes1-2 100 200 456 0 IBM_. . . 04_SAT_dat.k15 15300 65598 397812 0.25
aim-100-6_0-yes1-1 100 600 2502 0 IBM_. . . 05_SAT_dat.k15 25128 134922 1708357 1.22
aim-100-6_0-yes1-2 100 600 2534 0 IBM_. . . 15_SAT_dat.k100 226970 893496 2432156 2.46
aim-100-6_0-yes1-3 100 600 777 0 IBM_. . . 15_SAT_dat.k15 30790 119911 184301 0.19
aim-100-6_0-yes1-4 100 600 568 0 IBM_. . . 15_SAT_dat.k20 42330 165416 252596 0.26
aim-200-6_0-yes1-2 200 1200 6113 0.01 IBM_. . . 15_SAT_dat.k25 53870 210921 329216 0.33
aim-200-6_0-yes1-4 200 1200 696 0 IBM_. . . 15_SAT_dat.k30 65410 256426 413391 0.42
aim-50-2_0-yes1-2 50 100 218 0 IBM_. . . 15_SAT_dat.k35 76950 301931 506031 0.5
aim-50-2_0-yes1-3 50 100 250 0 IBM_. . . 15_SAT_dat.k40 88490 347436 606086 0.6
aim-50-2_0-yes1-4 50 100 156 0 IBM_. . . 15_SAT_dat.k45 100030 392941 714746 0.71
aim-50-6_0-yes1-1 50 300 516 0 IBM_. . . 15_SAT_dat.k50 111570 438446 830681 0.83
aim-50-6_0-yes1-2 50 300 692 0 IBM_. . . 15_SAT_dat.k55 123110 483951 955361 0.99
aim-50-6_0-yes1-3 50 300 440 0 IBM_. . . 15_SAT_dat.k60 134650 529456 1087176 1.07
aim-50-6_0-yes1-4 50 300 1621 0 IBM_. . . 15_SAT_dat.k65 146190 574961 1227876 1.22
cnf-r1-b3-k1.2 660004 5281 56944 0.21 IBM_. . . 15_SAT_dat.k70 157730 620466 1375571 1.38
cnf-r1-b4-k1.1 397893 7089 105048 0.18 IBM_. . . 15_SAT_dat.k75 169270 665971 1532291 1.53
cnf-r1-b4-k1.2 922148 6818 60079 0.29 IBM_. . . 15_SAT_dat.k80 180810 711476 1695866 1.69
cnf-r2-b2-k1.2 406052 6064 54402 0.15 IBM_. . . 15_SAT_dat.k85 192350 756981 1868606 1.88
cnf-r2-b3-k1.2 668180 9169 100807 0.27 IBM_. . . 15_SAT_dat.k90 203890 802486 2048061 2.06
cnf-r2-b4-k1.1 406052 12784 178182 0.25 IBM_. . . 15_SAT_dat.k95 215430 847991 2236821 2.26
cnf-r2-b4-k1.2 930282 12464 175575 0.37 IBM_. . . 22_SAT_dat.k10 18919 77414 596987 0.4

jnh10 100 850 6737 0.02 IBM_. . . 22_SAT_dat.k15 29833 122814 1249118 0.96
jnh11 100 850 11187 0.02 IBM_. . . 22_SAT_dat.k20 40753 168249 1845706 1.48
jnh12 100 850 5323 0.01 iso-brn005.shuffled 1130 9866 13572 0.02

jnh13 100 850 4940 0.01 f19-b21-s0-0 746 3517 23805 0.03
jnh14 100 850 3362 0.01 f27-b10-s0-0 193 1113 8268 0.01
jnh15 100 850 7544 0.01 f27-b1-s0-0 193 1113 9401 0.01
jnh18 100 850 16943 0.03 f27-b2-s0-0 193 1113 5614 0.01
jnh19 100 850 10836 0.02 f27-b3-s0-0 193 1113 8716 0.01
jnh202 100 800 4641 0.01 f27-b4-s0-0 193 1113 5992 0.01
jnh203 100 800 18563 0.03 f27-b5-s0-0 193 1113 5626 0.01
jnh208 100 800 16108 0.03 f27-b8-s0-0 193 1113 7702 0.01
jnh20 100 850 8478 0.02 f27-b9-s0-0 193 1113 8684 0.01
jnh211 100 800 3030 0.01 f83-b11-s0-0 1000 43900 318968 0.74
jnh214 100 800 12131 0.02 f83-b14-s0-0 1000 43540 811348 1.61
jnh215 100 800 10558 0.02 f83-b17-s0-0 1000 43900 180456 0.37
jnh216 100 800 12821 0.02 par8-1-c 64 254 5613 0
jnh2 100 850 2201 0 par8-1 350 1149 9224 0
jnh302 100 900 246 0 par8-2 350 1157 7641 0
jnh303 100 900 13452 0.03 par8-4-c 67 266 6216 0
jnh304 100 900 1720 0 par8-4 350 1155 10248 0.01
jnh305 100 900 5348 0.01 par8-5 350 1171 7978 0
jnh307 100 900 2211 0 pitch.boehm 1192 6361 656 0.01
jnh308 100 900 15155 0.03 qg5-10.shuffled 1000 43900 318968 0.69
jnh309 100 900 2460 0.01 qg6- 10.shuffled 1000 43540 811348 1.62
jnh310 100 900 3054 0.01 qg7-10.shuffled 1000 43900 180456 0.37
jnh4 100 850 5955 0.01 3col20_5_5.shuffled 40 176 774 0
jnh5 100 850 4151 0.01 3col20_5_6.shuffled 40 176 656 0
jnh8 100 850 4749 0.01 3col20_5_7.shuffled 40 176 903 0
jnh9 100 850 3099 0.01 3col20_5_9.shuffled 40 176 438 0

Table 5.1: UP-Horn instances
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instance size removed
CNF Instances #var. #cla. cla var #lit. #UP time (s.)
een-tipb-sr06-par1 163647 484831 94% 95% 252004 68362283 38.98
ezfact16_10.shuffled 193 1113 26% 34% 335 5614 0.01
ezfact16_3.shuffled 193 1113 37% 44% 479 5992 0.01
f32-b2-s0-0 40 176 70% 69% 178 941 0
f32-b4-s0-0 40 176 85% 77% 163 919 0
f33-b9-s0-0 80 346 88% 80% 391 5867 0
f6-b2-s2-20 478 1007 95% 92% 532 14216 0
IBM_FV_2004_rule_batch_03_SAT_dat.k30 29079 118925 44% 55% 31075 1393665 1.07
IBM_FV_2004_rule_batch_05_SAT_dat.k10 15399 81447 87% 93% 33203 1252239 0.76
IBM_FV_2004_rule_batch_05_SAT_dat.k20 34863 188452 74% 82% 72024 7798669 5.49
IBM_FV_2004_rule_batch_05_SAT_dat.k25 44598 241982 67% 75% 86760 18851484 16.38
IBM_FV_2004_rule_batch_05_SAT_dat.k30 54333 295512 60% 67% 99477 31503131 26.84
IBM_FV_2004_rule_batch_06_SAT_dat.k15 17501 75616 43% 49% 18130 1278040 1.07
IBM_FV_2004_rule_batch_06_SAT_dat.k20 23826 103226 71% 78% 41764 12961178 10.17
IBM_FV_2004_rule_batch_10_SAT_dat.k15 40278 159501 33% 35% 26022 8285670 6.89
IBM_FV_2004_rule_batch_1_11_SAT_dat.k10 28280 111519 47% 49% 25573 58410957 42.46
IBM_FV_2004_rule_batch_18_SAT_dat.k10 17141 69989 48% 55% 19878 13050828 8.7
IBM_FV_2004_rule_batch_19_SAT_dat.k10 21823 83902 24% 31% 13250 298260 0.26
IBM_FV_2004_rule_batch_19_SAT_dat.k15 34697 134023 17% 22% 14917 508638 0.47
IBM_FV_2004_rule_batch_19_SAT_dat.k20 47577 184178 17% 23% 23258 14607263 12.98
IBM_FV_2004_rule_batch_20_SAT_dat.k10 17567 72087 36% 41% 14004 5226452 3.63
IBM_FV_2004_rule_batch_21_SAT_dat.k10 15919 65180 35% 39% 11897 267966 0.21
IBM_FV_2004_rule_batch_21_SAT_dat.k15 25213 103881 25% 28% 13564 471438 0.39
IBM_FV_2004_rule_batch_21_SAT_dat.k20 34513 142616 26% 30% 21454 9624852 7.38
IBM_FV_2004_rule_batch_22_SAT_dat.k25 51673 213684 24% 27% 28739 30219471 22.32
IBM_FV_2004_rule_batch_23_SAT_dat.k10 18612 76086 41% 48% 16035 69713 0.09
IBM_FV_2004_rule_batch_27_SAT_dat.k10 6477 27070 62% 70% 10054 3826810 2.15
rip08.boehm 471 263 92% 59% 145 8728 0.01
x6dn.boehm 521 1255 86% 84% 1022 137818 0.07

Table 5.2: Reduction of SAT instances using several runs

Minisat % profit instance size removed
CNF Instance Original Simplified partial total #var #cla var cla #lit #UP time (s.)
f2clk_40 293.4 265.19 9 7 27568 80439 36% 36% 13619 5009951 5.52
f3-b29-s0-10 76.72 26.58 65 65 2125 12677 24% 35% 3520 127851 0.18
f28-b4-s0-0 3.15 0.04 98 96 769 4777 13% 22% 927 45554 0.08
f81-b3-s0-0 2081.34 1654.61 20 17 33385 163232 26% 30% 24855 36519004 63.69
fifo8_100 14.31 11.12 22 -48 64762 176313 42% 46% 42718 8435460 9.98
fifo8_200 43.74 77.5 -78 -134 129762 353513 37% 40% 76361 18309357 24.51
fifo8_300 349.92 152.11 56 45 194762 530713 35% 39% 109878 28532439 39.94
fifo8_400 500.73 428.59 14 3 259762 707913 34% 38% 143413 38349604 55.85
IBM_03_SAT_dat.k60 28.33 11.99 57 17 59649 244535 22% 27% 33386 12915029 11.33
IBM_03_SAT_dat.k90 195.45 173.44 11 1 90219 370145 17% 20% 38507 21481064 18.32
IBM_05_SAT_dat.k100 204.54 28.02 86 21 190623 1044932 21% 27% 167316 143847825 133.17
IBM_05_SAT_dat.k60 55.59 10.52 81 -37 112743 616692 31% 37% 123076 73459545 65.46
IBM_16_1_SAT_dat.k95 14.62 2.18 85 29 50492 203817 23% 26% 24509 9440470 8.16
ip50 92.63 307.54 -233 -266 66131 214786 36% 44% 47569 23195373 30.61
logistics-rotate-09t6 80.07 6.5 91 -55 8186 887558 15% 30% 908 157186029 117.23

Table 5.3: Some typical instances
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Chapter6
Extensions of Tovey’s polynomial

fragment of SAT

A first result in this chapter is a family of extensions [126, 123] of one well-known Tovey’s polynomial
fragment [9] so that they also include instances that can be simplified using UP. The second result is a
comparison between

⋃
Quad and G-UP-Tovey.

The chapter is organized as follows. In the next section 6.1, we present the work of Tovey and the related
works of it, then in section 6.2, we extend Tovey’s class in several directions using UP. In section 6.3 we
show that

⋃
Quad and G-UP-Tovey are incomparable.

6.1 The occurrence of variables and Tovey classes

Tovey in [9] studied the effect of the number of occurrence of variables per clauses on the NP-
completeness of SAT problem. That is, if we let (k, s)-SAT denote the SAT problem where each clause
has exactly k distinct literals and each variable occurs at most s times then Tovey shows that (3,4)-SAT
remains NP-complete and shows that (3,3)-SAT is trivial (always satisfiable). He also shows that the
SAT instances where each variable occurs at most twice is solved in linear time.

We present here the results of Tovey’s paper and some of related results that have been presented by
other authors [127, 128, 129, 130, 131, 132].

6.1.1 Tovey’s work

In this section we present the results of Tovey [9].
Let (k, s)-SAT={Σ ∈ SAT: ∀C ∈ C(Σ), |C| = k,∀l1, l2 ∈ C,V(l1) , V(l2),∀v ∈ V(Σ),OccΣ(v) ≤ s}.
Tovey first reduces 3-SAT to the following instances.

Theorem 40. [9] .
Boolean satisfiability is NP-complete when restricted to instances with 2 or 3 variables per clause and
at most 3 occurrences per variable.

Corollary 7. [9].
For any s ≥ 3, either

1. every Boolean expression with exactly 3 variables per clause and no more than s occurrences per
variable, is satisfiable, or

2. 3, s-SAT is NP-complete..

Tovey also proved the following.

Theorem 41. ((3, 4)-SAT )[9].
(3, 4)-SAT is NP-complete.

If the number of occurrences of all variables is less than or equal the length of the clauses then,

Theorem 42. (r, r-SAT) [9].
Every instance of r, r-SAT is satisfiable.
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The 2-occurrence case

From corollary 7, theorem 41, and theorem 42 all the cases of (k, s)-SAT where s ≥ 3 are solved (it is
either satisfiable or NP-complete). The only remaining case is when s = 2 that is every variable appears
at most 2 times.
For this case, Tovey presents a polynomial time algorithm, in fact it is linear time algorithm since (in
modern terminology) he used the two linear-time techniques that are used in modern SAT-solver to
simplify the given CNF formula, the UP-technique (to remove repeatedly the unit clauses form the
given CNF to get a new CNF without unit clauses) and monotone-literal technique (to assign the value
TRUE to the literals that appears monotony [appears just positively or just negatively]).
After applying these two techniques, he gets an equivalent CNF (if there is an empty clause during the UP
procedure where in this case the SAT instance is unsatisfiable) that satisfies the following two conditions.

1. All the clauses of the result CNF have length greater than one.

2. Each variable appears once complemented and once uncomplemented.

But if a CNF satisfies these two conditions then it is satisfiable according to the following lemma.

Property 77. A given CNF is satisfiable if it satisfies the two conditions 1 and 2.

Also Tovey [9] conjectured the following statement.

Conjecture 3. If s ≤ 2r−1 − 1, then every instance of r, s-SAT is satisfiable.

But Dubois in [130] disproved this conjecture, see the next section.

6.1.2 The works related to Tovey’s result

Dubois’ work

First, Dubois [130] disproved the conjecture of Tovey: if s ≤ 2r−1 − 1, then every instance of r, s-SAT is
satisfiable.
We note that if r < 4 and s ≤ 2r−1 − 1 then the instances r, s-SAT are satisfiable, if r = 1, s = 1 or r = 2
and hence s = 1 then the instances r, s-SAT are trivially satisfiable and if r = 3 and hence s = 3 then the
instances r, s-SAT are satisfiable according to theorem 42.
Therefore to disprove the conjecture one have to find an unsatisfiable instance r, s-SAT with r ≥ 4 and
s ≤ 2r−1 − 1.
If r = 4 then s ≤ 7 but Dubois constructed 4, 6-SAT unsatisfiable instance and hence disproved Tovey
conjecture.
Recursively, Dubois constructed 1-SAT, 2-SAT, 3-SAT,... unsatisfiable instances for looking for the
smallest possible values of s.
For that, two transformations are introduced that preserve the satisfiability and they were made to move
from an unsatisfiable r-SAT instance to an unsatisfiable r + 1-SAT instance.

Now we turn to the other related works by Dubois in [130]. First he proved that if all instances of a
given class r, s-SAT with exactly s occurrences per variable are satisfiable, then all instances of the class
of instances r, s-SAT with at most s occurrences per variable are satisfiable, by proving that if there is
an unsatisfiable instance r, s-SAT with at most s occurrences per variable then one can construct from it
another unsatisfiable instance r, s-SAT with exactly s occurrences per variable.

Proposition 2. [130]
If all instances of a given class r, s-SAT with exactly s occurrences per variable are satisfiable the class

of instances r, s-SAT is satisfiable.

Using proposition 2, Dubois [130] proved the following proposition where [x] denotes the integral
part of x, i.e., the greatest integer less than or equal x.
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Proposition 3. Let r0, s0-SAT be a satisfiable class of instances; then the class of instances
r0 + 1, s0 + [ s0

r0
]-SAT is satisfiable.

Thanks to proposition 3, Dubois [130] proved the following theorem.

Theorem 43. Let r0, s0-SAT be a satisfiable class of instances. Then any class of instances r, s-SAT such
that r = r0 + λ and s ≤ s0 + λ[ s0

r0
] with λ ∈ N, is satisfiable.

Proof. Apply proposition 3 λ times and use the fact [
s0+λ[ s0

r0
]

r0+λ ] = [ s0
r0

],∀λ ∈ N, we have that the class
r0 + λ, s0 + λ[ s0

r0
]-SAT is satisfiable. �

Finally, using theorem 43 Dubois [130] reproved theorem 42 of Tovey.

Corollary 8. Every instance of r, r-SAT is satisfiable.

Proof. The class 1, 1-SAT is trivially satisfiable, so all classes r, r-SAT are satisfiable. �

The work by Benhamou

Belaid Benhamou in [133] obtained the same result of corollary 8 that the class 1, 1-SAT is trivially
satisfiable, so all classes r, r-SAT are satisfiable, he proves that by using a relationship between matching
in bipartite graphs and the satisfiability problem, he gives an algorithm which finds a model for such
formulas in polynomial time complexity if one exists or, if not, proves in polynomial time complexity
that the current formula is not an element of the restricted class.

The work by Berman, Karpinski and Scott

Tovey (see section 6.1.1) showed that 3-SAT remains NP-complete if each variable occurs at most 4
times but 3-SAT is always satisfiable if each variable occurs at most 3 times. Berman, Karpinski and
Scott in [134] studied the relation between these two problems by showing the following:

1. Let k ≥ 0 be a fixed integer, the 3-SAT instances in which k variables occur four times and the
remaining variables occur three times has a polynomial time satisfiability algorithm.

2. The satisfiability of 3-SAT instances in which all but one variable occur three times, and the re-
maining variable occurs an arbitrary number of times, is NP-complete.

In this section we present this work.

Notation 17. [134]

1. Let (3, 4(k))-SAT denotes the set of 3-SAT instances in which k variables occur four times and the
remaining variables occur three times.

2. Let (3, 4(k), n)-SAT denotes the set of instances of (3, 4(k))-SAT with n variables.

According to this notation we have the following proposition.

Proposition 4. [135]

1. Every instance of (3, 4(3))-SAT is satisfiable.

2. There are unsatisfiable instances of (3, 4(9))-SAT.

The main theorem in this work is the following.

Theorem 44. [134]
The satisfiability of instances of (3, 4(k), n)-SAT can be determined in time 2k/3nk/3 poly(n).

The proof of theorem 44 used the following definition.‘
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Definition 210. (Witness function for a satisfying assignment) [134]
Let I be a satisfiable CNF and φ be a satisfying assignment for I. A witness function w : C(I) → V(I)
for φ is a function such that, ∀C ∈ C(I),∃L(W(C)) ∈ C and φ(L(W(C)) = TRUE.

So, w(C) is a variable that refers to the “ witnesses ” of the satisfaction of C in φ.
To prove theorem 44 the authors use the following lemma:

Property 78. [134]
If I is a satisfiable instance of (3, 4(k))-SAT then there is a satisfying assignment φ with a surjective
witness function w : C(I)→ V(I) for φ.

Hence, by theorem 44, for any fixed k, (3, 4(k), n)-SAT instances can be solved in polynomial time.

Then the authors in [134] proved that if the occurrence of at least one variable in 3-SAT is arbitrary
then it remains NP-complete.

Theorem 45. The restriction of 3-SAT to the set of instances in which all but one variable occur exactly
three times is NP-complete.

We give a little modified proof.

Proof. We give a reduction from 3-SAT similar to one given by Tovey.

1. We can assume without loss of generality that every variable appears at least twice (because if
there are variables appearing once, we can assign the value TRUE to the literals associated with
these variables and remove the clauses containing these variables and repeat this process until we
get an equivalent 3-SAT with every variable appearing at least twice).

2. If a variable x occurs exactly three times we do nothing. If x occurs d , 3 times (i.e., d = 2 or
d > 3), we introduce new variables x1, . . . , xd and add the clauses xi ∨ ¬xi+1,i = 1, . . . , d − 1 and
the clause xd ∨ ¬x1. Then we replace the d occurrences of x by x1, . . . , xd.
Hence, we get an equivalent SAT instance I with clauses of lengths 2 and 3, and every variable
appears exactly three times.

3. Take two copies I1, I2 of I (with disjoint sets of variables) and a new variable x. Add x to every
clause of lengths 2 in I1 and ¬x to every clause of lengths 2 in I2. The resulting instance is
equivalent to I and every variable except one in it appears exactly three times.

�

6.2 Extensions of one Tovey’s fragment

From now on, we call “ Tovey’s class" the class of CNF where any variable occurs at most twice (counting
occurrences of both positive and negative literals).1

Definition 211 (Tovey CNF). .
Let Σ be a CNF, Σ ∈ Tovey if and only if every variable appearing in Σ occurs at most twice in Σ.

It is well-known that the (un)satisfiability of a CNF Σ is preserved when a clause C of Σ is replaced
by one of its sub-clauses C′, provided that Σ � C′.

Property 79. Let Σ be a CNF, C be a clause of Σ and C′ be such that C′ ⊆ C. When Σ � C′ we have that
Σ is satisfiable if and only if (Σ \ {C}) ∪ {C′} is satisfiable.

1Actually, Tovey defined other polynomial fragments, too, see section 6.1.1
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The class of CNF that can be reduced into Tovey’s instances thanks to this property is defined as
follows. We call it

⋃
Tovey.

Definition 212 (
⋃

Tovey CNF). .
Let Σ = {C1, . . .Cm} be a CNF, Σ belongs to

⋃
Tovey if and only if ∃ Γ = {C′1, . . . C′m} ∈ Tovey s.t.

∀1 ≤ i ≤ m,C′i ⊆ Ci and Σ � C′i .

Remark 26. Unfortunately, checking the membership to
⋃

Tovey is intractable.
To circumvent this issue, we apply Property 79 in specific circumstances to find polynomial-time

recognizable and solvable extensions of Tovey; specifically, we apply the property only when Σ �∗ C′ so
that we can benefit from the linear-time complexity of UP.
Hence, we look for sub-classes of

⋃
Tovey for which instances can be recognized in polynomial time.

A concept of a clause that is Tovey in a CNF will prove useful in the following.

Definition 213 (Tovey clause). .
A clause C is a Tovey clause with respect to Σ if and only if every variable occurring in C occurs at most
twice in Σ.

The UP-Tovey clause can be defined in the following.

Definition 214 (UP-Tovey clause). .
A clause C ∈ Σ is called a UP-Tovey clause if and only if ∃ C′ ⊆ C s.t. C′ is a Tovey clause with respect
to Σ and Σ �∗ C′.

Let us now define a unit-propagation-based Tovey class. We call it UP-Tovey.

Definition 215 (UP-Tovey CNF). .
A CNF formula Σ ∈ UP-Tovey if and only if every clause of Σ is a UP-Tovey clause.

Obviously, checking the satisfiability of a CNF belonging to UP-Tovey can be achieved in polynomial
time.

The following well-known property will prove useful to provide a polynomial algorithm that checks
whether or not a given CNF belongs to UP-Tovey,

Property 80. Let Σ be a CNF and C be a clause. If Σ 2∗ C then ∀C′ ⊂ C, Σ 2∗ C′.

Accordingly, when a clause C is not UP-Tovey in Σ, it is sufficient to check whether the longest
sub-clause C′ that is Tovey is such that Σ �∗ C′ or not.

Definition 216. (Maximum Tovey sub-clause).
Let Σ be a CNF and C ∈ Σ. A clause C′ s.t. C′ ⊂ C is the maximum Tovey sub-clause of C in Σ if and

only if C′ is a Tovey clause in Σ and @ C′′ s.t. that C′ ⊂ C′′ ⊂ C and C′′ is a Tovey clause in Σ.

Property 81. Let Σ be a CNF, Σ ∈ UP-Tovey if and only if every clause C in Σ that is not Tovey in Σ

contains a sub-clause C′ that is a maximum Tovey sub-clause of C in Σ and such that Σ �∗ C′.

Thus, to check if a given CNF belongs to UP-Tovey, we only need to check for each clause of Σ if its
unique maximum Tovey sub-clause is a UP-consequence of Σ. Consequently, checking the membership
of a CNF to UP-Tovey and checking the satisfiability of a CNF belonging to UP-Tovey can both be
achieved in polynomial time.

Example 36. Let Σ = {{a, b, c}, {¬a, b}, {¬a, c}} be a CNF. It is easy to check that the following CNF
belongs to UP-Tovey.

Indeed, {b, c} is the maximum Tovey sub-clause of {a, b, c} and Σ �∗ {b, c}; as {{b, c}, {¬a, b}, {¬a, c}}
belongs to Tovey, we have that Σ belongs UP-Tovey.

Clearly, we have that
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Algorithm 18: Check-membership-in-UP-Tovey
Input: a CNF Σ

Output: TRUE if Σ ∈ UP-Tovey, FALSE otherwise

1 foreach C ∈ Σ do
2 C′ ← maxToveySubClause(C,Σ);
3 if (C′ = ∅) or (Σ 2∗ C′) then return FALSE ;

4 return TRUE ;

Function maxToveySubClause
Input: a clause C and a CNF Σ s.t. C ∈ Σ

Output: the maximum Tovey sub-clause of C with respect to Σ

1 C′ ← ∅ ;
2 foreach l ∈ C do
3 Let vl the boolean variable issued from the literal l ;
4 if (vl occurs at most twice in Σ) then C′ ← C′ ∪ {l} ;

5 return C′ ;

Property 82. UP-Tovey ⊂
⋃

Tovey.

Remark 27. A recognition algorithm for checking the membership of Σ in UP-Tovey needs thus to verify,
for each clause C ∈ Σ that is not Tovey in Σ, whether or not the maximum Tovey sub-clause of C in Σ can
be deduced from Σ by unit propagation.

Algorithm 18 does the job, clauses of Σ are processed one by one according to a static ordering on
the clauses of Σ.
Note that any such ordering can be used: this does not influence the result. C′, the maximum Tovey
sub-clause of C in Σ, is extracted by the function maxToveySubClause. If such a clause is not empty
and can be deduced from Σ by UP then the next clause is processed. In the other case, C is not UP-Tovey
in Σ and the algorithm returns FALSE.

In the worst-case, each clause is processed by unit propagation only once: the worst case time com-
plexity of the algorithm is thus in O(m × |Σ|), where m is the number of clauses in the CNF.

Property 83. Let Σ be a CNF of m clauses. The worst-case complexity of Algorithm 18 is in O(m × |Σ|).

Algorithm 18 is complete for UP-Tovey.

Property 84. Let Σ be a CNF, Σ ∈ UP-Tovey if and only if Check-membership-in-UP-Tovey(Σ) returns
TRUE.

Remark 28. Interestingly, it is possible to improve Algorithm 18 in such a way that it attempts to recog-
nize also (some) CNF that do not belong to UP-Tovey but that however belong to

⋃
Tovey, while keeping

a polynomial time worst-case complexity. It will allow the reduced instance Γ to contain clauses that are
UP-Tovey in Γ but that are not UP-Tovey in Σ. We call such a class UP+-Tovey and thus make sure that
UP-Tovey⊆ UP+-Tovey ⊂

⋃
Tovey.

To this end, we take advantage of the following properties.

• Maximum Tovey sub-clauses can be checked in the currently reduced instance Γ under construction
(instead of “ in the initial Σ").

• There is no loss of relevant information by checking Γ �∗ C′ instead of checking Σ �∗ C′.
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Algorithm 19: Check-membership-in-UP+-Tovey
Input: a CNF Σ

Output: TRUE if a proof of Σ ∈ UP+-Tovey is found; FALSE otherwise

1 Γ← Reduction(Σ) ;
2 return isTovey(Γ);

• Without altering the worst-case complexity, when we have Γ 2∗ C′, instead of ending the procedure,
we can still process the other C clauses in Γ. The goal is to deliver a CNF instance with shortened
clauses, so that the whole process can be iterated on this instance (and subsequent ones) with some
possible additional shortenings being done at each iteration step.

Algorithm 19 implements these ideas. First, Function Reduction is called to tentatively shorten clauses
of Σ. Then, it simply verifies whether the resulting CNF is Tovey ( line 2) by calling the function isTovey.
Note that in Reduction all instructions are achieved on Σ itself; thus Σ plays also the role of the CNF
under construction. All clauses of Σ are processed one by one in the Reduction function.

According to a static ordering of the clauses of Σ, the function does not stop when one clause C that
is not UP-Tovey in the current Σ has been discovered. It processes the remaining clauses in Σ. The hope
is that C will actually become a Tovey clause in Σ at the end of the whole (iterated) reduction process.
Obviously, Algorithm 19 remains incomplete for

⋃
UP-Tovey; especially, contrary to Algorithm 18, the

order according to which clauses are processed can influence the success of the reduction.
Moreover, when this algorithm returns FALSE, some of the clauses of Σ might have been substituted

by sub-clauses. Accordingly, Algorithm 19 can be iterated in order to recognize even more
⋃

Tovey
instances.

In the sequel, we present a generalization of the UP-Tovey class by defining a hierarchy of classes,
called G-UP-Tovey<(i) where < is a given total ordering of clauses (“G" standing for “Generalized”).
For convenience, we will drop the < parameter that is indexing the class.

Definition 217 (G-UP-Tovey(i) CNF). .
Let Σ be a CNF made of m clauses. The sequence Σ1,Σ2, . . . ,Σm is defined as follows.

• Σ1 = Reduction(Σ)

• Σi+1 = Reduction(Σi), where 1 ≤ i < m.

∀i ∈ [1..m] : Σ ∈ G-UP-Tovey(i) if and only if Σi is Tovey.

Remark 29. Clearly, whenever Σi+1 = Σi, no further change can occur in Σ j where j ≥ i. Since each call
to Reduction makes at least one clause become Tovey in the CNF under construction, it is guaranteed
that applying Reduction on Σm would not change Σm when m is the number of clauses in Σ.

Alternatively, we could have defined Σi+1 = (Σi\C)∪D for all C ∈ Σi s.t. ∃ D ⊂ C a maximum Tovey
sub-clause in Σi and Σi �

∗ D.

Algorithm 20 depicts a way to determine for a given CNF Σ, whether there exists a lowest i such that
Σ belongs to G-UP-Tovey(i) or not. In the positive case this lowest index i is found and is the output of
the Algorithm.

Notes 37. It is easy to show that G-UP-Tovey(i) ⊂G-UP-Tovey(i+1) for i ≥ 1. Indeed, any CNF formula
Σ that belongs to G-UP-Tovey(i) also belongs to G-UP-Tovey( j) for j > i, whereas the converse is not
TRUE.

Property 85. Let Σ be a CNF made of m clauses. The complexity of Algorithm 20 is in O(m2 × |Σ|).

Proof. As the number of calls to Algorithm 20 to Reduction is bound by m, the overall complexity is
then in O(m2 × |Σ|). �
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Chapter 6. Extensions of Tovey’s polynomial fragment of SAT

Function Reduction
Input: a CNF Σ

Output: a tentative reduction of Σ into a Tovey CNF

1 foreach C ∈ Σ do
2 C′ ← maxToveySubClause(C,Σ);
3 if (C′ , ∅) and (Σ �∗ C′) then Σ← (Σ\{C}) ∪ {C′};

4 return Σ ;

Function isTovey
Input: a CNF Σ

Output: TRUE if Σ is a Tovey FALSE otherwise

1 foreach v boolean variable occurring in Σ do
2 if (v occurs more than twice in Σ) then return FALSE ;

3 return TRUE ;

Clearly, we have:

Property 86. Let < be a total ordering of clauses.
UP-Tovey = G-UP-Tovey(1) ⊂ G-UP-Tovey(2) ⊂... ⊂ G-UP-Tovey(m − 1) ⊂ G-UP-Tovey(m) ⊂

⋃
Tovey.

Checking the membership to G-UP-Tovey(i) is in O(m2 × |Σ|).

Example 37. The formula Σ = {{a, b, c}, {¬c, d, e, h}, {¬c, f }, {¬d,¬e}, {¬ f , h}, {¬ f , ¬h}} shows that the
above hierarchy does not collapse since it belongs to G-UP-Tovey(2) and not to UP-Tovey (just consider
the order of clauses as they appear in the formula).

Firstly, {¬ f , h} is not a Tovey clause in Σ and has no Tovey sub-clause in Σ. Consequently, Σ does
neither belong to Tovey nor to UP-Tovey.

Secondly, {a, b} is the maximum Tovey sub-clause of {a, b, c} and Σ �∗ {a, b}. The other
clauses in Σ are either Tovey in Σ or do not have any Tovey sub-clause in Σ. Hence, Σ1 =

{{a, b}, {¬c, d, e, h}, {¬c, f }, {¬d,¬e}, {¬ f , h}, {¬ f ,¬h}}.
Now, consider Σ1. We have that {¬c, d, e} is the maximum Tovey sub-clause of {¬c, d, e, h} and Σ1 �

∗

{¬c, d, e}. We also have both that {¬c} is the maximum Tovey sub-clause of {¬c, f } and Σ1 �
∗ {¬c}.

The other clauses in Σ1 are either Tovey in Σ1 or do not have any Tovey sub-clause in Σ1. Hence,
Σ2 = {{a, b}, {¬c, d, e}, {¬c}, {¬d, ¬e}, {¬ f , h}, {¬ f ,¬h}}. As Σ2 belongs to Tovey, we have that Σ belongs
to G-UP-Tovey(2).

Let us end this section by three remarks.

Remark 30. 1. First, the G-UP-Tovey(i) tractable classes depend on the static ordering < of the
clauses. In the general case, to get rid of this dependence, we would need to consider all the
possible orderings and the resulting recognition algorithm would then become exponential.

2. A second remark is even in the case where a static clauses ordering is considered, if we look for
the smallest Tovey sub-clauses or simply the smallest sub-clause (line 3 of Algorithm Reduction)
in the reduction phase, the recognition algorithm becomes exponential in the size of the longest
clause.

3. Finally it must be noted that neither the UP-Tovey nor the G-UP-Tovey classes attempt to substitute
a clause by a sub-clause that would contain variables occurring more than twice, although it
might appear that other shortened clauses would decrease the total number of occurrences of
these variables, making the reduced CNF become Tovey. This is another reason that conducts the
proposed classes to be strict sub-classes of

⋃
Tovey.
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6.3. Comparison between
⋃

Quad and G-UP-Tovey

Algorithm 20: Membership-to-G-UP-Tovey(i)
Input: a CNF Σ made of m clauses
Output: The lowest i s.t. Σ ∈ UP-Tovey(i); 0 if such i does not exist

1 Σ0 ← Σ;
2 i← 0;
3 while (i < m) do
4 Σi+1 ← Reduction(Σi);
5 if ( isTovey(Σi+1)) then return i + 1;
6 else i← i + 1;

7 return 0;

6.3 Comparison between
⋃

Quad and G-UP-Tovey

To complete the comparison between the various tractable classes considered in this thesis, let us end
with the following results showing that

⋃
Quad and G-UP-Tovey are incomparable in the general case.

Theorem 46. For all i ≥ 1,

•
⋃

Quad * G-UP-Tovey(i)

• G-UP-Tovey(i) *
⋃

Quad.

Proof. Let us build two counter-examples showing that ⊆ does not hold. First, consider Σ =

{{a,¬b}, {a,¬c}, {a,¬d}}. Σ is in Quad since it does not contain any positive clause. However, Σ does
neither belong to UP-Tovey, nor to UP-Tovey(i). Indeed, no sub-clause of any clause of Σ can be de-
duced from Σ. Now, consider Ψ = {{a, b, c}, {d, e, f }, {¬a,¬b,¬c}}. Clearly, Ψ belongs to Tovey and thus
to G-UP-Tovey(i). However, Ψ does not belong to Root and no sub-clause can be derived according to
any ordering of clauses. Consequently, Ψ is not in

⋃
Quad. �
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Part V

Conclusions and perspectives

119





Tractable classes of SAT (namely, the classes that can be solved and recognized in polynomial time or
just solved in polynomial time when the recognition algorithm is not necessary (for example, for SLUR
class that does not use the structural properties of CNFs but it uses a nondeterministic algorithm, a CNF
in SLUR class can be solved in polynomial time without needing to know the recognition algorithm for
the SLUR class) are interesting in their own right and could also play an increasing role in future efficient
SAT solvers.

One can attempt to extend these classes while keeping polynomial solving and recognition algo-
rithms. There are many techniques that can be used to that end. Some of them are used to obtain
hierarchies of tractable classes such as the hierarchy of Gallo and Scutella [1], the hierarchy of Dalal and
Etherington [2], the hierarchy of Pretolani [3], the hierarchies of Cepek and Kucera [4], the hierarchy of
Kullmann [5], the hierarchy of Andrei et al. (Rankk hierarchy), and the hierarchies that generalize the
SLUR class such as the S LUR(i) hierarchy[84], the S LUR∗(i) hierarchy [106] and the S LURi hierarchy
[107, 108].

In this thesis, the focus was on fragments of the clausal Boolean language for which instances are
recognizable in polynomial time and satisfiability can be checked in polynomial time, too. Especially,
we have investigated several possible roles of the unit propagation (UP) mechanism in this respect.
Note that many of the well-known tractable classes (such as Horn [67, 68, 69, 2, 70, 71], reverse-Horn
[73], renamable-Horn [73], extended Horn [76], hidden extended Horn[76], simple extended Horn [78],
CC-balanced formulas [80], SLUR algorithm formulas [82, 83], almost-Horn [85], F − Horn∗ [86],
ordered[87], ordered-renamable [87], almost ordered formulas [87], q-Horn [79, 82, 88, 89], matched
[82], LinAut formulas[92, 25, 93], PURL algorithm [95], and the classes that depend on the occurrence
of variables such as Tovey classes [9] and the classes that depend on the the ordering of clauses such as
Quad classes [6]), already use in some way the linear-time UP procedure, which is also a basic operation
in all DPLL-like procedures in SAT solvers.

Two main techniques have been used in this thesis: the first one is by using the linear-time UP
procedure to entail a clause that subsumes at least one of the clauses of the given CNF. See [10] for a
similar method that extends Horn, reverse-Horn and 2SAT classes to UP-Horn, UP-reverse-Horn and
UP-bin, respectively. As a case study, a class called UP-Tovey has been defined whose instances can be
recognized and solved in quadratric time, extending the Tovey classes [9] (the ones that depend on the
occurrences of variables). The second technique is by replacing the incomplete UP procedure by another
polynomial time procedure. In this respect, the focus was about Dalal’s Quad fragments [6], which have
attracted little attention so far. Bounded by an almost quadratic complexity, these fragments capture
several well-known polynomial fragments like the Horn and binary ones and go beyond those fragments.
We have studied properties of Dalal’s fragments that can be used to extend these fragments. Especially,
we have exhibited one extension of Quad that keeps its complexity intact, and exhibited polynomial
variants. To this end, bounded resolution, which is an incomplete but polynomial time procedure [118],
was used to extend Quad. Also, we have extended Quad by using different orders among clauses and
subclauses instead of one unique order that was used in [6] among clauses and subclauses and we have
shown that UP-Horn and other UP-based fragments are included in

⋃
Quad.

In the future, we plan to investigate to which extent the detection of those fragments can be grafted
to existing SAT-solvers. We believe that progress in defining larger-cardinality polynomial fragments
and in better understanding their limits and properties could help in the design of even more powerful
SAT-solvers, which could detect these polynomial fragments, either during a pre-processing step and
during the main search itself. Extensive experimentations should help us to assess the extent to which
checking some of the polynomial fragments as a pre-processing step can improve SAT solvers. It should
also help us to assess which fragments prove more helpful experimentally. Finally, a key issue that we
plan to address in this respect is the definition and experimentation of heuristics that select (some of) the
ordering(s) of clauses on which Quad and its variants are based, as considering all orderings is obviously
out of reach, also trying of extend Quad to a class that does not depend on order (orders) for some
NP-complete subclasses of SAT such 3SAT.

Although this solves open questions about the relationships between these fragments, UP-Horn re-
mains of high interest since it does not depend on any ordering of clauses whereas each such ordering
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gives rise to a specific Quad class. Noticeably, although G-UP-Tovey(i) and
⋃

Quad are based on the
same inference rule (i.e., entailment modulo unit propagation), their reduction processes are different.
Accordingly, another promising path for further research would consist in investigating how these pro-
cesses could be mixed and hybridized, giving rise to variant tractable classes. One such path for further
research is relaxing some constraints of Quad while remaining polynomial. Especially, the reduction to
the Root class requires the UP-simplification by the negation of one single clause at a time. However
for some instances, Root can only be reached when such a UP-simplification is done for several clauses
together and when this leads to a satisfiable instance. This is a first easy extension of Quad.
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Résumé

La représentation des connaissances et les problèmes d’inférence associés restent à l’heure actuelle une
problématique riche et centrale en informatique et plus précisément en intelligence artificielle. Dans ce
cadre, la logique propositionnelle permet d’allier puissance d’expression et efficacité. Il reste que, tant
que P est différent de NP, la déduction en logique propositionnelle ne peut admettre de solutions à la
fois générales et efficaces. Dans cette thèse, nous adressons le problème de satisfiabilité et proposons de
nouvelles classes d’instances pouvant être résolues de manière polynomiale.

La découverte de nouvelles classes polynomiales pour SAT est à la fois importante d’un point de vue
théorique et pratique. En effet, on peut espérer les exploiter efficacement au sein de solveurs SAT. Dans
cette thèse, nous proposons d’étendre deux fragments polynomiaux de SAT à l’aide de la propagation
unitaire tout en s’assurant que ces fragments demeurent reconnus et résolus de manière polynomiale.

Le premier résultat de cette thèse concerne la classe Quad. Nous avons établi certaines propriétés de
cette classe d’instances et avons étendu cette dernière de manière à s’abstraire de l’ordre imposé sur les
littéraux. Le fragment obtenu en remplaçant cet ordre par différents ordres sur les clauses, conserve la
même complexité dans le pire cas. Nous avons également étudié l’impact de la résolution bornée et de
la redondance par propagation unitaire sur cette classe.

La seconde contribution concerne la classe polynomiale proposée par Tovey. La propagation unitaire
est une nouvelle fois utilisée pour étendre cette classe. Nous comparons le nouveau fragment polynomial
obtenu à deux autres classes basées également sur la propagation unitaire : Quad et UP-Horn. Nous
apportons également une réponse à une question ouverte au sujet des connexions de ces classes. Nous
montrons que UP-Horn et d’autres classes basées sur la propagation unitaire sont strictement incluses
dans

⋃
Quad qui représente l’union de toutes les classes Quad obtenues par l’exploitation de tous les

ordres sur les clauses possibles.

Mots-clés : Logique propositionnelle, SAT, classes polynomiales.

Abstract

Knowledge representation and reasoning is a key issue in computer science and more particularly in
artificial intelligence. In this respect, propositional logic is a representation formalism that is a good
trade-off between the opposite computational efficiency and expressiveness criteria. However, unless
P = NP, deduction in propositional logic is not polynomial in the worst case. So, in this thesis we
propose new extensions of tractable classes of the propositional satisfiability problem. Tractable frag-
ments of SAT play a role in the implementation of the most efficient current SAT solvers, many of these
tractable classes use the linear time unit propagation (UP) inference rule. We attempt to extend two of
currently-known polynomial fragments of SAT thanks to UP in such a way that the fragments can still be
recognized and solved in polynomial time. A first result focuses on Quad fragments: we establish some
properties of Quad fragments and extend these fragments and exhibit promising variants. The extension
is obtained by allowing Quad fixed total orderings of clauses to be accompanied with specific additional
separate orderings of maximal sub-clauses. The resulting fragments extend Quad without degrading its
worst-case complexity. Also, we investigate how bounded resolution and redundancy through unit prop-
agation can play a role in this respect. The second contribution on tractable subclasses of SAT concerns
extensions of one well-known Tovey’s polynomial fragment so that they also include instances that can
be simplified using UP. Then, we compare two existing polynomial fragments based on UP: namely,
Quad and UP-Horn. We also answer an open question about the connections between these two classes:
we show that UP-Horn and some other UP-based variants are strict subclasses of

⋃
Quad, where

⋃
Quad

is the union of all Quad classes obtained by investigating all possible orderings of clauses.

Keywords: Propositional logic, SAT, Tractable classes.
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