Thèse soutenue

Singularités libres, formes et résidus logarithmiques

FR  |  
EN
Auteur / Autrice : Delphine Pol
Direction : Jean-Michel Granger
Type : Thèse de doctorat
Discipline(s) : Mathématiques et leurs interactions
Date : Soutenance le 08/12/2016
Etablissement(s) : Angers
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et mathématiques (Nantes)
Partenaire(s) de recherche : Laboratoire : Laboratoire angevin de recherche en mathématiques (Angers) - Laboratoire Angevin de REcherche en MAthématiques (LAREMA)
Jury : Président / Présidente : Etienne Mann
Examinateurs / Examinatrices : Eric Delabaere, Felix Delgado De La Mata, Mathias Schulze
Rapporteur / Rapporteuse : Ragnar-Olaf Buchweitz, Alexandru Dimca

Résumé

FR  |  
EN

La théorie des champs de vecteurs logarithmiques et des formes différentielles logarithmiques d’une hypersurface singulière réduite est développée par K.Saito. Ces notions apparaissent dans l’étude de la connexion de Gauss-Manin de certaines familles de singularités et de leur déploiement semi-universel.Lorsque le module des champs de vecteurs logarithmiques est libre, l’hypersurface est appelée diviseur libre. A.G. Aleksandrov et A. Tsikh généralisent les notions de formes différentielles logarithmiques et de résidus logarithmiques aux intersections complètes et aux espaces de Cohen-Macaulay réduits.Nous étudions dans ce travail les formes différentielles logarithmiques d’un espace singulier réduit de codimension quelconque plongé dans une variété lisse, et nous développons une notion de singularités libres qui étend la notion de diviseurs libres. Les résidus des formes différentielles logarithmiques d’une hypersurface ainsi que leur généralisation aux espaces de codimension supérieure interviennent de façon cruciale dans ce travail de thèse. Notre premier objectif est de donner des caractérisations de la liberté pour les intersections complètes et les espaces de Cohen-Macaulay qui généralisent le cas des hypersurfaces. Nous accordons ensuite une attention particulière à une famille de singularités libres, à savoir les courbes, pour lesquelles nous décrivons le module des résidus logarithmiques en termes de multi-valuations.