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Abstract

My research interests during the preparation of my PhD were focused on the
study of inverse coefficients problems for partial differential equations, which is
one of the most rapidly growing research areas in Mathematics. There is a wide
mathematical literature on this topic, that is mostly concerned with space depen-
dent only unknown coefficients. In this thesis, I rather address the uniqueness
and stability issues in the inverse problem of determining time and space depen-
dent unknown coefficients from the knowledge of boundary data. The first part

of the thesis is devoted to the study of inverse problems for the wave equation.
Namely, we examine the uniqueness and stability issues in the determination of
unknown coefficients of the wave equation, from the knowledge of several suit-
able sets of boundary data. The first inverse problem we address is to determine
a first order coefficient appearing in a dissipative wave equation by boundary
observations. This is a mathematically challenging problem, as unique determi-
nation of time-dependent coefficients in hyperbolic equations is not even guar-
anteed on the entire time-space domain. Next, we prove logarithmic stable iden-
tification of zero-th order unknown coefficients, in the complement of cloacking
regions, from Neumann data. We also establish that the non-uniqueness man-
ifested in certain sub-domains of the propagation region can be removed upon
imposing suitable initial conditions to the system. Finally, the same type of anal-
ysis is carried out for the time dependent zero-th and first order unknown coeffi-
cients of the dissipative wave equation. The second part of this thesis deals with

the inverse problem of determining the space-dependent magnetic field and the
time-space dependent electric potential of the Schrodinger equation. We prove
stable identification in the whole domain of these two unknown coefficients, by
Neumann data. The derivation of these results boils down to a sufficiently large
set of geometric optics solutions to the system under investigation. There is an-
other approach for solving inverse coefficients problems, based on the celebrated
Bukhgeim-Klibanov method, which is by means of a Carleman estimate specif-
ically designed for the system under study. We prove with this approach that



the space dependent part of the electric and magnetic potentials of the magnetic
Schrodinger equation are simultaneously Lipschitz stably determined, by a finite
number of partial boundary measurements of the solution.



Résumé

Cette these est consacrée a I’étude de problemes inverses associés a des équations
aux dérivées partielles hyperboliques et de type Schrodinger. Il existe une vaste
littérature mathématique sur ce sujet, mais elle concerne surtout I'identification
de coefficients dépendant exclusivement de la variable spatiale. Ici, on s'intéresse
plut6t a 'étude de I'unicité et de la stabilité dans la détermination de coefficients
qui dépendent aussi de la variable temporelle.

La premiere partie de la thése est consacrée a I'étude de problemes inverses
pour I'équation des ondes. Il s’agit d’examiner les propriétés de stabilité et
d’unicité dans l'identification de certains coefficients apparaissant dans 'équation
des ondes, a partir de différents types d’observation. Le premier probléme traité
concerne I'identification d’'un coefficient d’ordre un apparaissant dans ’équation
des ondes dissipative. Ce probléme est difficile mathématiquement parlant,
car I'unicité de la détermination de coefficients dépendant du temps n’est pas
garantie dans tout le domaine, pour les équations hyperboliques. En fait, nous
montrons qu’'un coefficient d’ordre zéro peut étre déterminé de facon stable dans
le complément de la région dite "de cloacking", a partir de mesures de type Neu-
mann de la solution. De plus, nous établissons que la non-unicité manifestée
dans certaines parties du domaine de propagation peut étre éliminée par la con-
sidération de conditions initiales particulieres. Cette analyse s’adapte au cas de
I’équation des ondes dissipative, pour laquelle nous prouvons que les coefficients
dépendant du temps, et d’ordres zéro ou un en espace, peuvent étre déterminés
de facon stable, par 'observation de données de type Neumann.

La deuxieme partie de cette thése, traite du probleme de I'identification du
champ magnétique et du potentiel électrique apparaissant dans I'équation du
Schrédinger. Nous prouvons que ces coefficients peuvent étre déterminés de
facon stable dans tout le domaine, a partir de données de type Neumann. La déri-
vation de ces résultats est basée sur la construction d’'un ensemble de solutions
de type optique géométrique, adaptées au systeme étudié. Il existe une méthode
alternative pour I'analyse de ce type de problemes inverses, celle de Bukhgeim-
Klibanov, qui utilise une estimation de Carleman spécifique a 'opérateur con-



sidéré. Elle nous a permis de montrer qu’il est possible de récupérer de facon
stable et simultanée, la partie spatiale des potentiels électrique et magnétique
de I'équation de Schrédinger magnétique, a partir d'un nombre fini de mesures
partielles de la solution.



Résumé détaillé des résultats

obtenus

0.1 Introduction

Les travaux de recherche présentés dans cette these portent sur I’étude de prob-
lemes inverses consistant en I'identification de coefficients apparaissant dans des
équations aux dérivées partielles d’évolution. S’il existe déja une vaste littérature
mathématique sur ce sujet, il est a noter qu’elle concerne surtout la détermina-
tion de coefficients dépendant exclusivement des variable d’espace.

Dans cette theése, on s’'intéresse plutét a I'étude de 'unicité et de la stabilité,
dans deux types de problémes inverses aux limites, associés a des coefficients
qui dépendent non seulement des variables spatiales, mais aussi de la variable
temporelle. Le premier probleme inverse étudié est hyperbolique, car il porte sur
I’équation des ondes, amortie ou non. Il est décrit dans la section 0.2. Quant au
second, qui est associé a I’équation de Schrodinger magnétique, il est traité dans
la section 0.3.

0.2 Problemes inverses hyperboliques

La premiere partie de la these est consacrée a 1'’étude de problémes inverses
associés a I’équation des ondes dans un domaine borné §2 de R”, pour n > 2, de
frontiere I' = OS2 supposée lisse, c’est-a-dire de classe C>*. Etant donné 7' > 0,
on pose ) = Q2 x (0,7), onnote ¥ =T x (0,7) la frontiére latérale du cylindre



@, puis l'on considere le systeme suivant :

Pu — Au+ a(z, )0 + b(z, t)u =0, (z,t) € Q,
u(-,0) = ug, dwu(-,0)=u, x €, (0.1)
u=f, (z,t) € X.

Ici, x (resp., t) désigne la variable spatiale (resp., temporelle), uq et u; sont les
conditions initiales du systéme, et f est la condition dite “de Dirichlet", utilisée
dans la suite pour perturber le systeme (0.1). L'objectif principal de cette partie
est d’étudier les problemes d’unicité et de stabilité dans I'identification des coef-
ficients a et b apparaissant dans la premiere ligne de (0.1), a partir de mesures
latérales de la solution w.

Avant de passer a I'étude du probleme inverse mentionné ci-dessus, il con-
vient de noter a partir de [13]; [31]; [34] que le systeme (0.1) admet une unique
solution satisfaisant une inégalité d’énergie usuelle, sous des hypotheses de régu-
larité raisonables sur les coefficients a et b, les données initiales u, et u, et la
condition au bord f:

Theorem 0.2.1. Soient a € L>(Q) et b € L=(Q). Alors, pour tous ug € H* (),
up € L*(Q) et f € HY(X), satisfaisant la condition de compatibilité

F(-,0) = sur T,

il existe une unique solution u € C([0,T]; H'(Q)) N CY([0,T]; L*(Y)) du systéme
(0.1).
o

On vérifie ensuite que la dérivée normale 0,u(x,t) = §¢(z,t) = Vu(z,t)-v(x)

de u, ol v(x) désigne le vecteur unitaire normal sortant, calculé au point = € T,
V désigne l'opérateur gradient par rapport aux variables d’espace = € R", et -
le produit scalaire euclidien de R, appartient a L*(X):

ou € L*(%).

De plus, on démondre qu’il existe une constante positive C' > 0, pour laquelle
I'inégalité d’énergie

[0y ull L2y +[u( - Ol @)+ 10l - )| L2 < C (||f\|H1(z) + [Juoll rr o) + ||U1HL2(Q)) :

est vraie uniformément par rapport a t € [0, 7.



0.2.1 Un résultat de non unicité

La premiere contribution “inverse" de cette these est en fait un résultat de non
unicité locale pour les coefficients a et b, lorsque (ug,u;) = (0,0), par rapport a
I'opérateur Dirichlet-Neumann (ou Poincaré-Steklov):

Aop: HYE) — LAY)
f —  O,u.

Autrement dit, A, est I'opérateur qui a toute donnée de Dirichlet f € H'(X),
I'espace de Sobolev de premier ordre sur ¥, associe la valeur de la dérivée nor-
male de la solution u du systeme (0.1) excité par f.

En s’inspirant de 'analyse d’lkawa dans [23] et en utilisant le fait que les con-
ditions initiales u et u; sont prises égales a zéro, il est possible de montrer que
la solution u de (0.1) est identiquement nulle sur 'ensemble conique

%::{(x,t)eQ, 2l < 2t ogtg;}.

Ceci permet ensuite de déduire le résultat de non unicité locale suivant.

Theorem 0.2.2. (Non unicité). Soient a € Wh>(Q) et b € L>®(Q) tels que
supp (a,b) C €. Alors, on a Agp = Noyp.

Dans ce qui suit, on va supposer que le coefficient d’ordre un est égal a zéro,
c’est-a-dire que le “terme d’amortissement” a est identiquement nul dans le cylin-
dre @, afin d’examiner le probleme inverse de la détermination du “potentiel
électrique b", a partir de la donnée de A, = Ag,. La section 0.2.3 est entierement
consacrée a ’étude de la stabilité de ce probléme inverse. Mais tout d’abord, on
va commencer par traiter le cas ou a n’est pas identiquement nul et b = 0 dans
la section 0.2.2. Le cas ou (a,b) # (0,0), lui est traité dans la section 0.2.4. Les
résultats de la section 0.2.3 ont été publiés dans [P1], alors que ceux des sections
0.2.2 et 0.2.4 sont décrits dans [P3,P4].

La dérivation des résultats de stabilité des sections 0.2.3 et 0.2.4, et de celui
de la section 0.2.2, s'inspirent assez largement de [10]; [11] Elle repose essen-
tiellement sur la construction d’'un ensemble suffisamment riche de solutions
particuliéres de ’équation hyperbolique considérée, appelées “solutions optiques
géométriques". Compte tenu de la généralité des coefficients apparaissant dans
I’équation hyperbolique étudiée, ces fonctions ne peuvent évidemment pas étre
décrites explicitement, mais il est néanmoins possible de les caractériser suff-
isamment précisément, afin de démontrer une famille d’égalités pour le(s) coef-
ficient(s) inconnu(s). Ceci revient in fine a exprimer la transformée dite “rayons



lumineux" de ces coefficients en fonction des observations disponibles. La deux-
iéme étape clé de I'analyse de ce probleme est d*“inverser" cette transformation,
en la reliant prélalablement a celle de Fourier en plus d’un résultat technique
d’analyse complexe, déja utilisé dans [48]; [1] dont la démonstration a été com-
pletée dans cette these.

0.2.2 Unicité de a en I'absence de perturbation potentielle

(b=0)

En supposant que le coefficient b est nul partout (ce qui signifie qu’il n’y a au-
cune perturbation “électrique" affectant le systeme), il est possible d’identifier
dans un sous ensemble Q.. C @, formé par les lignes faisant un angle /4
avec l'axe temporel, et rencontrant les plans t = 0 et ¢t = T en dehors de
Q, = {z € R", |z| <r/2} x [0,T), le coefficient d’amortissement a, c'est-a-dire
le coefficient du terme différentiel du permier ordre en temps apparaissant dans
I'équation des ondes de (0.1), a partir de 'opérateur Dirichlet-Neumann A, .
Et ceci alors que les conditions initiales sont maintenues homogenes dans (2 :
(Uo, Ul) = (O, 0)

Theorem 0.2.3. (Unicité). Soient ay et ay dans C*(Q,.), vérifiant

ay = ay dans Q, \ Qyx.
Alors, st T > 2 Diam (), on a Uimplication :

(Aay o = Nayo) = (a1 = az dans Q,..) .

Le fait que l'idenfication de a ne soit que partielle (puisqu’elle n’a lieu que
sur )., qui est un sous-ensemble strict de ()) est évidemment en accord avec
le résultat du théoréme 0.2.2. D’une certaine facon, le résultat du théoreme
précélent est I'analogue pour a de celui qu'on va obtenir pour b au théoréme
0.2.4, en ce sens que le second coefficient entrant dans ’équation hyperbolique
est supposé nul.

0.2.3 Détermination stable de b en I’absence

d’amortissement (a = 0)



0.2.3.1 Identification partielle

Tout d’abord, lorsque les conditions initiales sont prises égales a zéro, c’est-a-
dire lorsque uy = u; = 0, il découle facilement du théoréme 0.2.2 que le coef-
ficient inconnu b ne peut étre identifié de facon unique sur tout le domaine (@,
au moyen de 'opérateur A,. En fait, Ramm et Rakesh ont montré dans [36] que
b est entierement déterminé par A, sur un sous-ensemble @, . C Q. Il est donc
nécessaire que b soit connu en dehors de @), ., pour que ce résultat s’applique.
De fait, c’est 'hypothese principale faite dans le théoreme suivant, qui améliore
le résultat précité de Ramm et Rakesh, en ce sens qu’il établit que A, détermine
b de facon stable dans @, ..

Theorem 0.2.4. (Stabilité). Soient by et by dans C*(Q,), tels que
by = by dans Q, \ Qyx, et O.by = 0,by sur Q. N IQ; .. (0.2)

Etant donné M > 0, on suppose de plus que ||b;|lw1.0) < M, pouri =1,2, et
on choisit T > 2 Diam (). Alors, il ezxiste deuz constantes C' > 0 and p; € (0,1),

qui dépendent uniquement de 2, M, T et n, telles que

b = ball i1y < C (1A = Any ™ + [og [[As, = A, [I71) -

On constate a la lumiere du théoreme 0.2.4, que la non unicité manifestée dans
le théoreme 0.2.2, limite de fait I'identification stable du potentiel électrique b au
cone €. A ce stade, il est donc naturel d’examiner si le domaine d’identifiabilité
de b peut étre élargi, en augmentant la quantité d’information disponible sur la
solution u du systeme (0.1). L'étude de cette question fait I'objet de la section
suivante.

0.2.3.2 Données augmentées

Rappelons que dans cette section, les conditions initiales sont toujours fixées
a zéro : uy = u; = 0 dans . L’idée est d’ajoindre a I'information “latérale"
donnée par A,, celle fournie par la mesure finale “volumique" de la solution u
et de sa dérivée premiere par rapport au temps. Plus précisément, I'information
“augmentée" disponible est définie par I'opérateur linéaire borné

Ry HY (L) — L*Z) x HY(Q) x L*(Q),
f — (Oyu, u(.,T), Owu(.,T)),

10



ou I'on rappelle que u est la solution du systeme (0.1) associé a a = 0 et (ug, u1) =
(0,0). Le fait de bénéficier de l'information supplémentaire (u(-,7"), pu(-,T)
mesurée dans (), a permis de construire un sous-ensemble Q,; O @, ., formé
par les lignes faisant un angle /4 avec 'axe temporel, et rencontrant le plans
t = 0 en dehors de @Q,, sur lequel %, détermine b de facon stable. Autrement dit,
I'énoncé du théoréme 0.2.4 reste valable en remplacant (@, ., Ay) par (Q.y, %):

Theorem 0.2.5. (Stabilité avec données augmentées). Avec les notations et sous

les conditions du théoréme 0.2.4, ot (0.2) est remplacée par
by = by dans Q, \ Qry et Opby = 0pby sur 0Q, N OQ4, (0.3)
il existe deux constantes C > 0 and py € (0,1), telles que :
lbs = ball -1, ) < C (1%, — o |1 + | log |, — 0, || 7).

De plus, C' et pu ne dépendent que de 2, M, T et n.

Le théoreme 0.2.5 permet donc, en complétant de facon adéquate les données
latérales utilisées dans le théoreme 0.2.4, d’élargir le domaine de reconstruction
stable de b, au sous-domaine strict (),; C (). En fait, I'analyse développée dans
[36] montre qu'on ne peut espérer identifier b sur le cylindre () en entier, en
gardant, comme dans le théoréme 0.2.5, les conditions initiales fixées a zéro.
C’est pourquoi, nous examinons dans la section suivante, le probleme inverse de
la détermination de b sur tout le domaine (), a partir de données obtenues en
excitant le systeme (0.1) avec des conditions initiales (ug, ;) non-homogenes.

0.2.3.3 Identification compléte

Le terme “identification compléte" fait ici référence a la détermination du coeffi-
cient inconnu b dans le domaine () en entier. On considere pour cela la collection
de toutes les données contenues dans %, obtenue en faisant varier les conditions
initiales (uo, u; ) du systeme (0.1), dans des espaces fonctionnels ad-hoc. Plus pré-
cisément, a étant toujours supposée uniformément nulle dans @), I’ensemble des
observations considérées est défini par 'opérateur linéaire borné

I,: HY(X)x HY(Q) x L*(Q) — L*(X) x H(Q) x L*(Q),
(f,uo,uq) — (O, u(.,T), Owu(.,T)),

11



ol u désigne la solution du systéeme (0.1) associé a la donnée de Dirichlet f et
aux données initiales (ug, u1). Le potentiel b est alors entierement déterminé par
7, dans tout le cylindre Q.

Theorem 0.2.6. (Reconstruction dans Q). Etant donné M > 0, on considére

deuz potentiels by et by dans C1(Q), vérifiant
Opbi(x,t) = Oby(x,t), (x,t) € X,

ainsi que la condition ||b;||w1.@) < M, pour i = 1,2. Alors, il existe deux con-

stantes C > 0 and p; € (0,1), ne dépendant que de Q, M, T et n, telles que

b1 = ball 1) < C (1o — Toal™ + |log [T, — Tl ™) -

Comme on vient de le voir, les sections 0.2.3 et 0.2.2 sont consacrées au prob-
leme inverse de la détermination (a partir de divers ensembles de données) de
|’ un des deux coefficients a ou b, entrant dans '’équation hyperbolique du sys-
teme (0.1), puisque le second coefficient est systématiquement pris égal a zéro.
La section suivante s’affranchit de cette hypothese simplificatrice et traite du
probleme inverse plus général de la détermination de (a,b).

0.2.4 Identification stable de (a, b)

Dans cette partie, on s’intéresse donc au probleme d’identification des deux co-
efficients inconnus « et b, apparaissant dans ’équation hyperbolique du systéme
(0.1). Plus précisément, on ne suppose plus, comme c’était le cas dans les sec-
tions 0.2.3 et 0.2.2, que a ou b est uniformément nul dans Q.

Commencons par introduire 'ensemble des coefficients admissibles :

A, M) = {(a,b) € C2(@Q,) x C'(@,); llallexq) < M, [blleniqy < M},

ol M et M’ sont deux réels strictement positifs fixés. On procéde comme dans
la section 0.2.3 en ce sens que I'on examine d’abord le cas ou les conditions
initiales sont prises égales a zero et 'ensemble de données disponibles est décrit
par I’ opérateur Dirichlet-Neumann A, ;. Comme il est impossible de recouvrir a
et b dans () dans ce contexte, en vertu du théoréme 0.2.2, on augmente ensuite
progressivement la taille des données disponibles (en complétant I'information
“latérale" apportée par A,;, par 'observation finale, dans tout (2, de la solution

12



du systeme, puis en la “dupliquant” suffisamment en faisant varier les conditions
initiales) jusqu’a l'identification totale.

0.2.4.1 Identification partielle de (a,b)
On rappelle que (ug,u;) = (0,0). Le résultat correspondant s’exprime comme

suit, les données initiales étant fixées a zéro : ug = u; = 0 dans ).

Theorem 0.2.7. (Stabilité par rapport a 'opérateur DN). Etant donnés M > 0 et
M’ >0, on considére (a;,b;) € A(M, M), pour i = 1,2, vérifiant ||a;| arq) < M,

pour p > (n+ 3)/2, ainsi que les conditions suivantes :

(a1,b1) = (ag, be) dans Q, \ Q. et (Opa1,0:b1) = (Dpag, Opba) sur AQ, N AQ; ..
(0.4)
Alors, si T > 2 Diam (), il existe (m,u, 1) € (0,1)* et C' € (0,400) dépendant

uniquement de 2, M, M', T et n, pour lesquelles, si |[[Nay b, — Nagpn|| < My on a:

_1\ M
lar = aal| (@) < C' (108 [ Aaypy = Azl )"

et
ii —1
by = ballrr-1(q...) < C (log [1og Ay b = AasolI*)

De facon similaire a ce qui a été vu dans la section 0.2.3, il est possible
d’adjoindre des données supplémentaires a A,,, pour reconstruire (a,b) dans

Qr,ﬁ ) Qr,*°
0.2.4.2 Reconstruction stable dans (), ;
Sans surprise, on définit 'opérateur linéaire et continu

Ry HY(E) — LAX) x HY(Q) x L*(Q),
f — (O, u(.,T), Owu(.,T)),

ol u est la solution du systéme (0.1) associée a f et (ug,u;) = (0,0). Il permet
d’identifier (a,b) de facon stable dans (), ;, en ce sens que 'énoncé du théoréme
0.2.7 reste donc valable en remplacant (Q), ., Ay ) par (Qrs, Zap)-

13



Theorem 0.2.8. (Extension de la stabilité a Q). Sous les conditions du

théoréme 0.2.7, a ceci prés que la condition (0.4) est remplacée par

(a1,b1) = (a2, bs) dans Q, \ Qs et (Dyar, Deby) = (Dpa2, 0ubs) sur OQy N IQuy,

il existe (m,u, i) € (0,1)3 et C € (0,+00) dépendant uniquement de 2, M, M’,

T et n, pour lesquelles,si || RBay by — Pasps || < M, 00 a:

IRAVZ
lar = asllz=(q,p) < C (1108 |Bar s = Pasiulll )"

et
i -1
”bl - b2||H*1(QM¢) < C <1Og ‘ 10g ||'%ll1,b1 - c%CL2J72H| ) :

Pour étendre la reconstruction a () en entier, on procéde comme dans la sec-
tion 0.2.3.3, c’est-a-dire que 'on considere la collection des observations con-
tenues dans 'opérateur %, ;, obtenue pour toutes les données initiales (ug, u;) €
H'(Q) x L*(Q) possibles.

0.2.4.3 Reconstruction totale
L’ensemble des observations est donc défini par 'opérateur

Top: HYZ) x HY(Q) x L2(Q) — L*X) x HY(Q) x L*(),
(f,uo,u1) — (O, u(.,T), Owu(.,T)),

ol u est encore une fois la solution du systeme (0.1). Il permet d’identifier a et b
de facon stable dans tout le cylindre Q.

Theorem 0.2.9. (Détermination dans Q). Etant donnés M > 0 et M' > 0, on
consideére (a;,b;) € C*(Q) x CHQ), i = 1,2, vérifiant ||a;||mr@) + ||aillcz) < M

pour p > (n+3)/2, ainsi que ||b;]|crq) < M' et la condition suivante :

(0pa1, Opby) = (Opaz, Opbs) sur X.

14



Alors, il existe (m, u, i) € (0,1)3 et C € (0,+00) dépendant uniquement de Q, M,

M', T etn, tels que si || Zay b, — Zagp,|| < m, on a :
_1\ M
lax — aal|~(g) < € (110g | Zayy — Zansolll )"

et
a1
[b1 = bol[g-1() < C (log 1108 [|Zay by — Zaz s || ) :

On remarque que l'inégalité de stabilité du potentiel b dans les théoremes
0.2.7, 0.2.8 et 0.2.9, est de type log-log, alors qu’elle est de type log dans les
théoremes 0.2.4, 0.2.5 et 0.2.6.

0.3 Problémes inverses associés a I’équation de

Schrodinger magnétique

La deuxieme partie de la these est consacrée a I'étude de problemes inverses
aux limites associés a '’équation de Schrodinger magnétique non autonome. On
s'intéresse plus particulierement a la détermination des deux coefficients incon-
nus apparaissant devant les termes différentiels d’ordres zero et un, par rapport
aux variables d’espace, appelés “potentiel électrique" et “potentiel magnétique"
dans la terminologie physique.

Deux approches complémentaires de ce probléme, mais tres différentes du
point de vue de 'analyse mathématique, ont été mises en ceuvre, qui s’adaptent
en fait a la structure des données disponibles. Le premier cas envisagé est celui
ou I'ensemble des données est constitué par une infinité d’observations con-
tenues dans 'opérateur de Dirichlet-Neumann magnétique. L’approche corre-
spondante est ici assez similaire a celle utilisée dans la section 0.2, puisqu’elle
procede par construction d’'un ensemble adapté de solutions de type “optique
géométrique" de I'’équation de Schrédinger magnétique. Le second cas est celui
ol I'ensemble des données ne contient qu'un nombre fini (n + 1 exactement)
textbf de mesures latérales partielles de la solution de '’équation de Schrédinger
magnétique. Dans ce cas précis, la méthode de résolution s’inspire de celle de
Buckheim-Klibanov [14] , et s’appuie essentiellment sur une inégalité de Carle-
man spécifique a '’équation considérée.

Les résultats de cette section sont décrits dans [P2,P5].
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0.3.1 Identification a partir de 'opérateur Dirichlet-Neumann
magnétique

Soit €2 un ouvert borné et simplement connexe de R", avec n > 3, de frontiere
I' = 09, de classe C*. Pour T' > 0 fixé, on considére le systéme suivant

(10 + Aq + q(z,t)u=0, (x,t)eQ=Qx(0,7T)
u(.,0) = uo, x € Q, (0.5)
u=f, (r,t) e =T x (0,7,

associé a la condition initiale u, et la la donnée de Dirichlet f. Le potentiel élec-
trique ¢ € W2>(0,T; Wh>(Q)) est a valeurs réelles, et A, désigne I'opérateur
de Laplace magnétique associé au potentiel A = (a;)1<j<n € C*(Q; R"),

Ap=32(0;+ia;)2 = A +2A-V +idiv(A) — |A]2

=1

L’objectif principal est donc ici d’étudier le probleme de stabilité dans I'identification
du potentiel électrique ¢ et de la 2-forme différentielle

o i 8ai 8aj
doy = Z (axj — 8xi)d% A dx;,

1,j=1

associée au potentiel magnétique A, a partir de la connaissance de I'opérateur
Dirichlet-Neumann

Aay: (o, f) —> (u(.,T), (0, +¢A-V>u).

Notons que dans le cas particulier ou n = 3, la 2-forme da 4 s’identifie au vecteur
rot A € R3, appelé “champ magnétique" induit par A dans la terminologie
physique.

Avant de passer a I'étude du probleme inverse il convient de résoudre (en
s'inspirant de [5]; [16]) le probleme direct associé au systeme (0.5) a 'aide du
résultat d’existence et d’unicité suivant.

Theorem 0.3.1. Soient ¢ € WH(Q) et A € CY(Q). Alors, pour tout uy €
H} Q)N H?*(Q) et tout f € H*(X) := H*(0,T; L*(T")) N L*(0, T; H(T)) vérifiant
f(,0) =0,f(.,0) = 0 dans Q, il existe une unique solution u € C(0,T; H'(Q)) du

systeme (0.5). De plus, d,u € L*(X), et il existe une constante C' > 0, dépendant
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seulement de Q, T, ||Allcr) et ||q|lwreeq) telle que lestimation

[, )@ + 0l o) < C (luollaze) + 1l s))

est vraie pour tout t € (0,T).

En s’'inspirant notamment de I'analyse développée dans [5]; [16]; [15] il est
ensuite possible de montrer que A, , détermine le potentiel ¢ et le champ mag-
nétique da 4, de fagon stable.

Theorem 0.3.2. (Stabilité par rapport a l'opérateur Dirichlet-Neumann magné-
tique). Etant donné M > 0, on considére q; € W»*°(0,T; Wh>(Q)) et A; €
C3(Q), i = 1,2, vérifiant ||A;l|gs) < M pour un certain réel § > (n + 3)/2,

Gillw2ee 01000y < M, ainsi que la condition
(A1, q1) = (Az,q2) sur X.

Alors, il existe £ > 0 tel que l’inégalité de stabilité suivante

S
Y

Hdaz‘\l - daA2 “LOO(Q) <C (HAAWJQ - AA1,111 ”1/2 + ‘ log HAAQ,% - AAl,th |||7M)

a lieu pour des constantes C > 0 et (u,s) € (0,1)%, ne dépendant que de Q, €, M

et T, et ceci a condition que
[Aillwsoe) <&, i=1,2. (0.6)

De plus, dans le cas particulier ou div A; = 0 pour tout © = 1,2, alors il existe
C >0 et (u,m) € (0,1)%, toutes ces constantes ne dépendant que de Q, e, M et
T, telles que

|l — @2lla-1@) < CPum([[Aazg — Aayall),
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avec

|log |log [logn|#||~" ifn <m,
qu(n) =

1

—1 ifn>m.

m

Notons que la condition (0.6) imposée aux A;, i = 1,2, dans le théoreme 0.3.2,
s'introduit en fait naturellement durant la phase de construction des solutions
optiques géométriques du systeme (0.5).

0.3.2 Identification a partir de n + 1 observations latérales de

la solution

L’objectif de cette section, développée dans [P5], est d’identifier simultanément
les coefficients A et ¢ a partir d'un nombre fini de mesures latérales et partielles
de la solution du systeme (0.5). Pour cela, il est en fait nécessaire de supposer
que les potentiels électrique et magnétique s’écrivent sous la forme particuliere
suivante

q(z,t) = B(t)q(x) et A(z,t) = x(t)A(x), (0.7)
ou 3 et x sont deux fonctions prises dans C3(0, T'; R), qui vérifient
T T T T
(3)=8(3)=0x(5) 207 (3) #0 (08)

Dans ces conditions, le systéeme (0.5) associé a la condition de Dirichlet ho-
mogene f = 0, et dont la condition “initiale" est imposée (pour des raisons
techniques qui ne réduisent pas la généralité des résultats a venir) en t = 7'/2
plut6t qu’en ¢ = 0, se met sous la forme suivante :

( — @0, + 1V + x(t)A)* + B(t)q)u =0 dans Q,
u ( : %) = g dans . (0.9)
u=0 sur X.

Comme les potentiels électrique et magnétique sont trois fois continiment
dérivables par rapport au temps, on obtient un résultat d’existence et d’unicité
plus fort que celui du Theoréme 0.3.1, pour peu que la condition “initiale" u, et
le second membre f perturbant le systeme associé a (0.9), soient suffisamment
réguliers.

Theorem 0.3.3. Soient ¢ € L®(;R) et A € HY(Q;R™) tel que div A = 0 dans
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Q. On rappelle que B et x sont fizées dans C*(0,T;R) et satisfont la condition
(0.8). Alors, pour tout ug € H*(Q) N H () tel que

AFug € H*(Q)N HY(Q), k=1,2,
et tout f € W2(0,T; H*(Q) N H}(Q), il existe une unique solution
w € C0,T; H(9) 1 HY(Q)) N (0, T; (),

du probléeme de Cauchy

(=0 + (1V + XA)? + Bq)u = f, dans Q = x (0,T),
u(-,%)zuo dans 2.

De plus il existe une constante C' > 0 telle que

, j
J07uC Dllm < €3 [ ugllm, j=0,12 te(OT). (0.0
k=0

L’objectif est ici d’améliorer les résultats de stabilité inverse démontrés dans
[3]; [18] en supposant que I'un des deux coefficients a ou ¢ est identiquement
nuls. Il s’agit donc d’obtenir un résultat d’identification stable et simultanée de
la partie spatiale des potentiels électrique et magnétique, a partir d'un nombre
fini d’obeservations de solution du systéme (0.9).

Theorem 0.3.4. Soit M > 0 et soit V un voisinage arbitraire de la frontiére I'.
On considére (Aj,q;) € H'(R™) x L2(4R), j = 1,2, tels que ||Ajllmo) +
gjllLe) < M, div Aj =0 dans €2, et

Ay = Ay et g1 = qo dans).

Alors, il existe I'T C T ainsi que n+ 1 conditions initiales ugy, k = 0, ...,n, pour
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lesquelles on a l'inéglité de stabilité suivante :

A — AQ”%?(Q) +[lq1 — 6]2||%2(Q) <C Z ||avat2u1,k - auafuzk||%2(0,T;L2(r+))-
k=0

Ici, la constante C > 0 ne depend que de 2, T', B et x, et ujy, pour j = 1,2 et
k=0,...,n, désigne la solution du systéme (0.9) ou est remplacé par ug .

Le résultat du théoreme précédent est optimal, en ce sens qu’il garantit la
détermination (Holder-stable) de n + 1 coefficients inconnus (les n composantes
de A et ¢) a partir de n+1 mesures seulement (qui plus est, latérales et partielles)
de la solution du systéme (0.9).

Par ailleurs, il faut noter que la condition de divergence nulle imposée au po-
tentiel magnétique A est inévitable dans le contexte du probléme inverse exam-
iné ici, puisqu’il est manifeste que le “champ magnétique" da 4 ne détermine A
qu’a un changement de jauge prées. En réalité, la condition divergentielle choisie
ne fait rien d’autre que fixer la “classe de jauge" des potentiels magnétiques ad-
missibles (en 'occurence, celle dite “de Coulomb"). C’est le prix a payer si 'on
veut avoir une chance d’identifer directement le potentiel magnétique, plutot
que le “champ magnétique" da 4 qu’il induit, a partir d’observations latérales de
la solution.

Ensuite, il convient de préciser, méme si cela n’a pas été fait I'énoncé du
théoreme 0.3.4, que les n + 1 conditions initiales uq, ¥ = 0,1, ...,n, mention-
nées plus haut, peuvent de fait étre décrites de facon totalement explicites.

Enfin, on peut remarquer que si les données employées au théoréme 0.3.4
pour identifier A et ¢, sont nettement plus “économiques" que celles utilisées
au théoréme 0.3.2 dans le méme but, cela implique en autres conditions, que
les coefficients considérés aient d’une part la forme préscrite par (0.7), ce qui
est tres contraignant, et d’autre part une régularité supérieure (d’ordre 3, au
minimum) par rapport a la variable temporelle. De plus, le résultat théoréme du
0.3.4 ne détermine que la partie spatiale des potentiels électrique et magnétique
inconnus.
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Introduction

A lot of physical phenomena can be modeled by partial differential equa-
tions describing the evolution of the problem parameters. The coefficients ap-
pearing in these equations model important unknown properties of the media
under study. The identification of such internal parameters from observed mea-

surements models the so-colled inverse problem.

The study of inverse problems often requieres a good knowlegde of the di-
rect problem which consists in finding solutions to these equations provided the
knowledge of the applied sources, the initial and boundary conditions, and the
properties of the medium. For the direct problem, the physical properties of the

medium are assumed to be known and we rather aim to find the output results.

The notion of inverse problems have been steadily gaining popularity in mod-
ern science, since the middle of the 20th century, notably to designate the de-
termination, through input-output or cause-effect experiments, of unknown co-
efficients in the physics equations. It designates the best possible reconstruction
of missing informations and it appears in several fields like medical imaging,
geology, sattelites, radar theory... In view of J.B.Keller [28] two problems are in-
verse to each other if the formulation of one puts the other in question. In 1923,
Jacques Hadamard [22] introduced the notion of well-posed problems. Indeed,

It is a problem that satisfies the following conditions:
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1. The existence of a solution
2. The uniqueness of the solution
3. The stability of the solution (the continuous dependence on data).

According to Hadamard, the most of inverse problems are ill posed, in the sens
that a small error in the measurement can cause a huge error in the identifica-

tion.

My research interests during the preparation of my PhD were focused on the
analysis of inverse problems of determining some coefficients appearing in non-
autonomous hyperbolic, and magnetic systems. The main and common objective
is to establish uniqueness and stability results for the identification of these coef-
ficients. In a first time, we will focus our interest on the study of inverse problems
for a wave equation. Then, we will move to the analysis of inverse problems con-
cerning a magnetic Schrodinger equation. The thesis can then be divided into

two principal parts:

Part I: Hyperbolic inverse problems: The first part of the thesis is devoted
to the study of inverse problems associated to the wave equation in a bounded
domain @ = Q x (0,7"), where 2 is a bounded domain of R™ for n > 2 with C*
boundary I' = 0f). We denote by ¥ = I" x (0,7") and we introduce the following
system

O?u — Au+ a(z, t)Ou(x, t) + b(x, t)u =0, in Q,

u(+,0) =wug, dwu(-,0)=mu, in €, (0.11)

u=f, on X,

where ug and u; are the initial conditions and f is the Dirichlet data which will
be used to probe the system. Our goal in this part is to treat the uniqueness

and the stability issues for the determination of the time and space-dependent
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coefficients a "and/or" b appearing in the equation (0.11), from measurements

made on the solution w.

Actually, there is a wide mathematical literature on this topic but it is mostly
concerned with space-dependent unknown coefficients. Indeed, In the case
where the unknown coefficient is depending only on the spatial variable, Rakesh
and Symes [35] proved by means of geometric optics solutions, a uniqueness re-
sult in recovering a time-independent potential in a wave equation from global
Neumann data. The uniqueness by local Neumann data, was considered by Eskin
[21] and Isakov [25] In [7] Bellassoued, Choulli and Yamamoto proved a log-type
stability estimate, in the case where the Neumann data are observed on any ar-
bitrary subset of the boundary. Isakov and Sun [27] proved that the knowledge
of local Dirichlet-to-Neumann map yields a stability result of Holder type in de-
termining a coefficient in a subdomain. As for the stability obtained from global
Neumann data, one can see Sun [44] Cipolatti and Lopez [17] The case of Rie-
mannian manifold was considered by Bellassoued and Dos Santos Ferreira [8]

Stefanov and Uhlmann [43]

All the mentioned papers are concerned only with time-independent coeffi-
cients. In the case where the coefficient is also depending on the time variable,
there is a uniqueness result proved by Ramm and Rakesh [36] in which they
showed that a time-dependent coefficient, with a compact support, appearing in
a wave equation with zero initial conditions, can be uniquely determined from
the knowledge of global Neumann data, but only in a precise subset of the cylin-
drical domain () that is made of lines making an angle of = /4 with the ¢-axis and
meeting the planes ¢t = 0 and ¢ = T outside (). However, inspired by the work of
[46] Isakov proved in [26] that the time-dependent coefficient can be recovered
from the responses of the medium for all possible initial data, over the whole

domain Q.

As for uniqueness results, we have also the paper of Stefanov [41] in which
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he proved that a time-dependent potential, tempered in the time variable and
appearing in a wave equation can be uniquely recovered from scattering data and
the paper of Ramm and Sjostrand [37] in which they proved a uniqueness result
for a tempered time-dependent coeffcient on an infinite time-space cylindrical

domain ) x R,.

The stability in the case where the unknown coefficient is also depending on
the time variable, was considered by Salazar [38] who extended the result of
Ramm and Sjostrand [37] to more general coefficients and he established a sta-
bility result for compactly supported coefficients provided 7' is sufficiently large.
We also refer to the works of Kian [29]; [30] who followed techniques used by
Bellassoued, Jellali and Yamamoto [10]; [11] and proved uniqueness and a log-
log type stability estimate from the knowledge of partial Neumann data. As for
stability results from global Neumann data we refer to Waters [49] who derived,
in Riemannian case, conditional Holder stability estimates for the X-ray trans-
form of the time-dependent potential appearing in the wave equation. As for
results of hyperbolic inverse problems dealing with single measurement data,

one can see [2]; [4]; [12]; [19]; [24]; [42] and the references therein.

The first inverse problem considered in the thesis is to know whether the
knowledge of boundary Neumann measurements can uniquely determine the
time-dependent coefficient a appearing in the dissipative wave equation (0.11)
with b = 0 and (ug,u;) = (0,0). It was actually a challenging problem as unique
determination of the coefficient, in the case where the initial conditions are fixed
to zero, is not even guarateed on the entire space-time domain (). Because of
this obstruction to uniqueness, we were able to prove a uniqueness theorem for
this problem, only in a precise subset of the domain (). A better description of
this obstruction to uniqueness and a rigorous proof of the uniquness result are

given in Chapter 2.

The second inverse problem considered in this thesis, is the purpose of Chapter
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4 and it consists in the identification of the zero order space and time-dependent
coefficient b appearing in (0.11) with a = 0, from differents sets of data. We will
first derive a log-type stability estimate with respect to the Dirichlet-to-Neumann
map for the restriction of b to a suitable subset of the domain (). This is provided
that b is known outside the above subset. Then, by enlarging the set of data, we
will prove that b can be stably retrieved in larger subsets of the domain, including

the whole domain itself.

This problem was actually treated by Ramm and Rakesh in [36] in the case
where the initial conditions are fixed to zero and they proved a uniqueness result
which is valid in a specific subset of the domain. By studying the problem under
consideration, we radher aimed to know whether the time-dependent coefficient
b can be stably recovered in some specific subsets of the cylindrical domain @
from boundary measurements made on the solution u of the wave equation. It
was also a challenging problem as unique determination of the coefficient, in
the homogeneous initial conditions case , is not guarateed on the whole domain
Q. Nevertheless, we were able to stably retrieve the coefficient outside the non-

uniqueness "cloaking" areas.

The results given in Chapitre 2 and 4 were, thereafter, partially generalised
and improved by establishing stability estimates for the two space and time-
dependent unknown coefficients a and b appearing in the wave equation (0.11)
with respect to Neumann boundary measurements. Indeed, inspired by the work
of Bellassoued [5] we will prove stability estimates in the recovery of the un-
known coefficients a and b via different sets of measurements and over different
subsets of the domain (). The reader will find rigerous proofs of the stability
results in Chapter 5.

The derivation of the results of Chapter 3, 4 and 5, boils down on building
a sufficiently large set of geometric optics solutions for the systems under in-

vestigation, and on the relation between the light-ray transform and the Fourier
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transform. We will give more explicit informations about the construction of the
geometric optics solutions and the notion of the light-ray transform in Chapter
1. Chapter 3 will be devoted to prove a technical result that plays a crucial role
in proving our main results.

Part II: Inverse problems for magnetic Schréodinger equations: The second

part of the thesis is devoted to treat inverse problems that concern magnetic
Schrodinger equations. Our primary focus is to study the stability issue in de-
termining the magnetic field induced by the magnetic potential A and the time-

dependent electric potential ¢ appearing in the following Schrodinger equation

(10, + Aa+q(z,t))u =0, in Q,
u(.,0) = uy, in Q, (0.12)
u=f, on X,

from the knowledge of Neumann boundary observations. Here u, is the initial
condition and f is the Dirichlet data which will be used in order to probe the
system.

Actually, the problem of recovering coefficients in the magnetic Schrédinger
equation was treated by many authors. In [6] Bellassoued and Choulli considered
the problem of recovering the magnetic potential A from the knowledge of the
Dirichlet-to-Neumann map A4(f) = (9, + iv.A)u for f € L*(X), associated to
the Schrodinger equation with zero initial data. As it was noted in [20] the
Dirichlet-to-Neumann map A, is invariant under the gauge transformation of

the magnetic potential. Namely, given ¢ € C*(Q) such that ¢ = 0, we have
6_il’DAA6i(p = AA-{-cha G_iL‘DAABil’D = AA+V<,07 (013)

and Ay = Aaiv,. Therefore, the magnetic potential A can not be uniquely deter-
mined by the Dirichlet-to-Neumann map A4. In geometric terms, the magnetic

potential A defines the connection given by the one form ay = >°7_, a;dx;. The
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non uniqueness manifested in (0.13) says that the best one can hope to recover

from the Dirichlet-to-Neumann map is the 2-form

v (9@1» 8aj
dog = Z (8@ — ax)d:vj A dx;,

1,j=1

called the magnetic field. Bellassoued and Choulli proved in dimension n > 2
that the knowledge of the Dirichlet-to-Neumann map A, Holder stably deter-
mines the magnetic field da4.

In the presence of a time-independent electric potential, the inverse problem
of determining the magnetic field da4 and the electric potential ¢ from bound-
ary observations was first considered by Sun [45] in the case n > 3. He showed
that day and ¢ can be uniquely determined when A € W?*, ¢ € L* and day
is small in the L* norm. In [15] Benjoud studied the inverse problem of re-
covering the magnetic field da4 and the electric potential ¢ from the knowledge
of the Dirichlet-to-Neumann map. Assuming that the potentials are known in a
neighborhood of the boundary, she proved a stability estimate with respect to
arbitrary partial boundary observations.

In the Riemannian case, Bellassoued [5] proved recently a Holder-type stabil-
ity estimate in the recovery of the magnetic field da 4 and the time-independent
electric potential ¢ from the knowledge of the Dirichlet-to-Neumann map asso-
ciated to the Shrodinger equation with zero initial data. In the absence of the
magnetic potential A, the problem of recovering the electric potential ¢ on a
compact Riemannian manifold was solved by Bellassoued and Dos Santos Fer-
reira [9]

The problem of determining time-dependent electromagnetic potentials ap-
pearing in a Schrodinger equation was treated by Eskin [20] Using a geomet-
ric optics construction, he prove the uniqueness for this problem in domains
with obstacles. In unbounded domains and in the absence of the magnetic po-

tential, Choulli , Kian and Soccorsi [16] treated the problem of recovering the
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time-dependent scalar potential ¢ appearing in the Schrodinger equation from
boundary observations. Assuming that the domain is a 1-periodic cylindrical
waveguide, they proved logarithmic stability for this problem.

In Chapter 7, we will deal with the inverse problem associated to the equation
(0.12) and we will prove by means of techniques used in [5]; [15] and under
some hypothesis on the coefficients A and ¢, a "log-type" stability estimate in the
recovery of the magnetic field and a "log-log-log-type" stability inequality in the
determination of the time-dependent electric potential from the knowledge of

the Dirichlet-to-Neumann map.

The last inverse problem we deal with in this thesis will be the purpose of
Chapter 8, wich consists in determining two coefficients appearing in a magnetic
Schrodinger equation in a bounded domain ) = 2 x (0,7") with lateral boudary
Y., where () is a bounded domain of R™ for n > 1. So, let us consider the following

system

(=i + iV + x(t)a(x))? + B(t)q(x) ulz,t) =0,  in Q,
u(z, L) = uo(z) in Q,

u(z,t) =0, on ¥,

Our gaol is to identify the magnetic potential a and the magnetic field ¢ from a
finite number of Neumann measurements taken in a suboundary of the X.

To our knowledge, there is a few results on the recovery of coefficients ap-
pearing in a Schrodinger equation, from a finite number of boundary measure-
ments. By a method based essentially on an appropriate Carleman estimate, Bau-
douin and Puel [3] showed that the electric potential in the Shrédinger equation
can be stably recovered from a single boundary measurement. In [18] Cristo-
fol and Soccorsi proved a Lipschitz stability in recovering the magnetic field in

the Schrédinger equation from a finite number of observations, measured on a
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subboundary for different choices of .

In Chapter 8, we improve the two above mentionned results by showing that
the electric potential and the magnetic field can be stably and simultaneously
recovered from a finite number of boundary observations of the solution. We
stress out that the simultaneous identification of the magnetic field and the elec-
tric potential in the Schrédinger equation cannot be directly obtained from the
results of [3] and [18] as the electric (resp. magnetic) potential is a two (resp.

first) order perturbation of the Laplacian.
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CHAPTER 1

Hyperbolic problems and

light-ray transfrom

1.1 Introduction

The understanding of real world phenomena and technology is today in a wide
part based on partial differential equations. In the first part of the thesis, we
will focus our interest on the analysis of a family of inverse coefficients prob-
lems concerning the hyperbolic equation the most classic describing the wave

propagation phenomenon.

Let 2 C R” be a bounded domain of R",with n > 2 with smooth boundary I'.
We denote by @) = Q x (0,7") the domain of propagation and by ¥ = T" x (0,7

its boundary. Let us consider the following system

02u — Au+ a(z, t)0u + b(z, t)u =0 in Q,
U(ZL“, O) = uO(x)v atu(xv O) = ul(x) in Q, (1'1)
u(z,t) = f(x,t) on X,

where = and ¢ are respectively the space and the time variables, u, and u; are
the initial conditions and f is the Dirichlet data used to probe the system. Our
main goal is to treat the uniqueness and the stability issues in determining the

time-dependent coefficients a "and/or" b appearing in the wave equation (1.1),
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from measurements made on the solution .

The study of inverse problems often requires useful knowledge of the direct
problem. So, we shall first treat the well posedness for the initial boundary value
problem (1.1). Throughout the first section of this chapter, we focus our atten-
tion on a proof of the existence of a unique solution u to the initial boundary
value problem (1.1). Moreover, we study its regularity and we prove an en-
ergy estimate that v satisfies. The second part of this chapter is devoted to the
construction of special geometrical optics solutions to the wave equation (1.1).
The construction of such solutions will play a crucial role in the main statements
proofs. We end this chapter by introducing the light-ray transform that will also

be used in the derivation of the main results.

1.2 Well-posedness

In this section, we aim to prove the existence, uniqueness and smoothness prop-
erties of the solution v of the initial boundary value problem (1.1). The materials
used in this section are picked up from Lions and Magenes [34] Bellassoued and

Yamamoto [13] and Lasiecka, Lions and Triggiani [31]

Theorem 1.2.1. Let T >0, a € L>®(Q) and b € L*(Q) be given. Assume that
up € H'(Q), w; € L*(Q), and f€ HY(D).

Suppose in addition that the following compatibility condition is satisfied that is
f(+,0) = uopr. Then, there exists a unique solution u to the equation (1.1) such
that

w € ([0, T); B (€)) N CH([0,T]; L2(9).

Moreover, d,u € L*(X) and there exists a positive constant C' > 0 such that we
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have

10wl 2y +Hllul - Ol @+ 10l )|z < C (I Fllm) + luollm @ + llunll e )
(1.2)

Proof. We first split u into two terms u = v 4+ w, where v and w solve respectively

the following initial boundary value problems

(02 — A)yv =0 in Q,
v(-,0) =ug, Ow(-,0)=wuy; in Q,
’U:f on Z,

and

(02 — A+ ad; + b)w = —(ad; + b)v in Q,
w(+,0)=0, dw(-,0)=0 in €,

w=20 on X.

Using the fact that ug € H'(), u; € L*(Q) and f € H'(X), one can see from
[13][Theorem 2.2.5] (see also [31][Theorem 2.1]), that there exists a unique solu-
tion v € C(0,T; H*(Q)) such that d,v € C(0,T; L*(Q2)) and 9,v € L*(X). Moreover,

there exists a positive constant C' > 0 such that

10,0l 2wy +lloC Ollm@+ 10w+, D)2y < O )+ ol o)+ ur 2.

(1.3)
Furthermore, since —(ad; + b)v € L*(Q), then from the theory developped in
[34][ chapter 3, Section 8], one can check that there exists a unique solution

w € C(0,T; H'(Q) such that 9w € C(0,T; L*(2)) and satisfying

10cw (- )| o) + [lw(-, D) < Clladw + bollL2g)
CIf Nl + ol o) + ]z J1.4)

IN
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Next, we consider a C? vector field N on () satisfying
N(z)=v(z), zeT; IN(z)| <1, zeQ.

Multiplying both sides of the second system by < N,Vw > and integrate over
Q = x(0,T), we obtain

// a(x, £)dw + bz, H)w) < N,V > dedt = //82w<NVw>dxdt
//Aw<NVw>d:cdt+// (,1) Bw < N,V > dz dt

From (1.4) and proceeding as in [13][ Chapter 2, Section 2.4], one can check that

T 2
[ [1owidedt] < C1nd+ (1l + luolm + lullee) ]
2
< C [|1| + [ L] + [ L3] + 1] + (||f||H1(2) + [Juoll 1) + ||U1||L2(Q)) }

N

Therefore, using the fact that
2
|+ L]+ L]+ L] <C (||f||H1(z) + [Juoll 21 () + ||U1||L2(Q)) ,

we obtain

l0wllzags) < C (Il + luollm@ + llusll 2y )- (1.5)

Collecting (1.3)-(1.5), we get the desired estimate (1.2). O

1.3 Construction of geometric optics solutions

The construction of special solutions to some partial differential equations have
played an important role in the resolution of inverse problems. The present

section is devoted to the construction of suitable geometrical optics solutions
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concentrated near lines with any direction w € S"~!, for the dissipative wave
equation (1.1), which are key ingredients to the proof of the main results of this

thesis.

We shall first state the following lemma which is needed to prove the main

result of this section.

Lemma 1.3.1. (see [34]/ Chapter 3, Section 8]) Let T, My, My >0, a € L*(Q)
and b € L>(Q), such that ||al|L=q) < My and [|b||L=(q) < M,. Assume that F' €

L*(0,T; L*(Q)). Then, there exists a unique solution u to the following equation

O2u — Au+ a(z, t)0u + bz, t)u(x, t) = F(x,t) in Q,
u(z,t) =0 on X,

such that
w e C([0,T]; Hy () N CH([0, TT; L*(12)).

Moreover, there exists a constant C' > 0 such that

1Oru(- s D)l 2@y + [[Vul-, D2 < ClF|20m22 (@) (1.7)

Armed with the above lemma, we may now construct suitable geometrical op-
tics solutions to the dissipative wave equation (1.1) and to its retrograde prob-
lem. For this purpose, we consider ¢ € C;°(R") and notice that for all w € S"~!

the function ¢ given by
¢(z,t) = p(z + tw), (1.8)

solves the following transport equation
(O —w-V)p(z,t) = 0. (1.9)

We are now in position to prove the following statement
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Lemma 1.3.2. Let (a,b) € Wh=(Q) x L*(Q), i = 1,2. Given w € S"™! and
v € CP(R™), we consider the function ¢ defined by (1.8). Then, for any A > 0,

the following equation
Ofu — Au+ a(z,t)0u + b(z,t)u =0 in Q, (1.10)
admits a unique solution
ut € C([0,T]; H'(Q)) NC([0,T]; L*(2)),
of the following form
ut(z,t) = ¢la, t) AT (x, 1)@t Lt (1), (1.11)
where At (xz,t) is given by
At (z,t) :exp<— ;/Ota(:z;—l—(t—s)w,s) ds), (1.12)
and ry (z,t) satisfies
ri(x,0) =0y (z,0) =0, inQ, 7ri(x,t)=0 onX. (1.13)
Moreover, there exists a positive constant C' > 0 such that
Allrx (o2 + 103 (D)l e2) + IV (- D) l2@) < Clllmsgn.  (1.14)

Proof. We put g(x,t) = — ((?t? —A+a(z,t)0; +b(x, t)> (¢($, A (z, t)ei)\(x~w+t)).
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In light of (1.10) and (1.11), it will be enough to prove the existence of ry satisfying

(0 = &+ alw, 00, + b)) = gl 1),
v (z,0) = By (x,0) = 0, (1.15)
v (1) = 0,

and obeying the estimate (1.14). From (1.9) and using the fact that A*(z,t) solves

the following equation
2(0; — 2w-V)AT (2,t) = —a(x,t) AT (2, 1),
we obtain the following identity
gz, 1) = —eA@ et (af—A+a(x,t)at+b(x,t)> (gzs(x,t)/ﬁ(x,t)) _ et g ),

where gy € L*(0,T, L*(Q2)). Thus, in view of Lemma 1.3.1, there exists a unique

solution

rx € C([0, T]; Hy(2)) N C([0, TT; L*(Q)),
satisfying (1.15). Let us now define by w the following function
t
w(z,t) :/ ri(x,s)ds. (1.16)
0

We integrate the equation (1.15) over [0, t], for t € (0,7"). Then, in view of (1.16),

we have

(8,52 — A+ a(z,t)0, + b(x, t))w(m, t) = /Ot g(z,s)ds + /Ot (b(x, t) — b(x, s))rf{(m, s) ds
+ /Ot dsa(x, s)ry(z,s) ds.
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Therefore, w is a solution to the following equation

((93 — A +a(x,t)0 + b(x,t))w(x,t) = Fi(z,t) + Fy(z,t) in Q,
w(z,0) =0 = dyw(x,0) in Q,
w(z,t) =0 on X%,

where F| and Fj are given by
t
Fi(z,t) = / g(z,5) ds, (1.17)
0

and

Fy(z,t) = /Ot (b(x, t) — bz, s))rf{(m, s)ds + /Ot dsa(x, s)ry (z, s) ds.

Let 7 € [0,T]. Applying Lemma 1.3.1 on the interval [0, 7], we get

T t
0 Dty < ORIy + T O +403) [ [ 15 (e, )| ds do dt).

From (1.16), we get

T rt
00 ey < ORIz + [ [ 190, 5)3) ds dt)
< O<||F1||%2(0,T;L2(Q))+T/O ||3sw('>3)||%2(9) dS)-

Therefore, from Gronwall’s Lemma, we find out that
|Opw( - aﬂ“%zm) < C”FIH%Q(O,T;L?(Q))'
As a consequence, in light of (1.16), we conclude that |7 (-, ¢)||r2@) < C||Fillr207:22()-

Further, according to (1.17), F can be written as follows

t

1 gt .
Fie,t) = [ glo,s)ds = — [ gola. )0, d

0
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Integrating by parts with respect to s, we conclude that there exists a positive

constant C > 0 such that

C
I () l2@) < 5 Nellrs -

Finally, since ||g||z20,7;22(0)) < C|l@||las@®n) , the energy estimate (1.7) associated
to the problem (1.15) yields

10iry (-, D)l 2@) + VX (-5 D)l 2@ < Cllollas@ny-

This completes the proof of the lemma. U

As a consequence we have the following lemma

Lemma 1.3.3. Let (a;,b;) € WH>(Q) x L®(Q), for i = 1,2. Given w € S*!
and p € C°(R™), we consider the function ¢ defined by (1.8). Then, the following
equation

Otu — Au — a(x,t)0u + b(z,hu =0 in Q, (1.18)

admits a unique solution
u” € C([0, 7] H () N ([0, T]; L*(9)),
of the following form
u”(z,1) = (x4 tw) A~ (x, )e N9 L= (g 1), (1.19)
where A~ (x,t) is given by

A (z,t) = exp (; /Ot a(z + (t — s)w, s) ds>, (1.20)
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and ry (z,t) satisfies
r(z,T) =0y (2, T)=0, in Q, r,(z,t)=0 on X. (1.21)
Moreover, there exists a constant C' > 0 such that
Allrx (o Olle2@) + 18y (- Dll2@) < Cllellms e (1.22)

Proof. We prove this result by proceeding as in the proof of Lemma 1.3.2. Putting

3o, 1) = —(8 — & — alw, 00+ b, 0)) (0, A" (e New).
Then, it would be enough to see that if =~ = r, is solution to the following system

(ag — A= az, )0, + bz, t))r‘(x, £) = g(z,6) in Q,
r~(x,T)=0= 0w (z,T) in Q,
7“_<£L‘,t) =0 on E,

then, ry (z,t) = r~(z,T —t) is a solution to (1.15) with g(z,t) = g(z,T —t) and
a(x,t), b(x,t) are replaced by a(x,T —t) and b(x,T — t). O

1.4 The light-ray transform

In this section, we focus our interest on one of the most important key ingredi-
ents in the proof of the main results of this thesis: the light-ray transrom. This
transform belongs to the class of X-rays transforms. It appears in the study of
hyperbolic equations and it allows to recover coefficients from boundary infor-
mation. The X-ray transform is an integral transform of practical importance
which it is introduced by Fritz John in 1938. It is considered as one of the cor-

nerstones of modern integral geometry.
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Definition 1.4.1. (The X-ray transform) Let w € S*™! and w* the hyperplane
through the origin orthogonal to w. We parameterize a line l(z,w) in R™ by speci-

fying its direction w € S and the point x where the line intersects the hyperplane

wr. The X-ray transform of the function f € L'(R") is given by

X(f)(x,w) = /R flz — sw)ds.

We see that X (f)(z,w) is the integral of f over the line l(x,w) parallel to w which

passes through x € w=.

The integral transforms most relevant for tomography are the X-ray transform
and the Radon transform. In two dimensions these transforms coincide apart
from a parametrization: we parameterize w € S! by its polar angle ¢ and define

a vector w* orthogonal to w such that
w = (cosp,sing), wh = (—siny,cosy).

Then, the points in the subspace w™ are given by w' = {sw', s & R} and we

have the relation

X()(swh,w) = P(f)(s,w"),

where P(f) is the Radon transform given by

P(Asw)= [ fly—sw)dy, seR.

In this thesis we are radher intereseted in the light-ray transform which is the
integral of a function f over lines of direction @ = (w,1) where w € S"~!. The

light-ray transform can be defined as follows:

Definition 1.4.2. (The light-ray transform) Let w € S"'. The light-ray trans-

form R maps a function defined in R™*1 into the set of its line integrals and it is
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given by the following formula

R(f)(z,w) ::/Rf(x—sw,s)ds,

We see that R(f)(x,w) is the integral of f over the lines {(z — sw,s), s €

R, x € R}. There is an immediate relation linking the light-ray transform of a

Y

function f to the Fourier transform of f, that will prove to be useful:

Lemma 1.4.1. Let w € S"! and f € LY(R™). We have for all £ € R,

~

F(R(g)(-,w))(&) = f(&w-E).

Proof. By the change of variables x = y — tw we have for all £ € R™ and all

we St

(/ fly —tw,t) dt)e’iy'édy
n R
f(z, t)e @ SO gy at

LB we ™y = [

R

I
—
—

R JR™

~

= f(§w-9).

O

As we will see in the next chapters, Lemma 1.4.1 will be used in order to adress

questions of uniquness, stability and reconstruction...
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CHAPTER 2

The uniqueness issue for

hyperbolic inverse problems

The contents of this chapter are
collected in a paper accepted at

ARIMA.

2.1 Introduction

In this chapter, we study of the uniqueness issue for inverse coefficients problems
for non-autonomous hyperbolic equations. Our primary focus is to deepen the
concept of local non-uniqueness in the recovery of time-dependent coefficients
in a wave equation and give a better description of the non-uniqueness cloaking

area.

We emphasise on a basic property of a second order hyperbolic equation and
show how the value of the solution of a second order hyperbolic equation can be
effected by its value in some finite domain of the data, which is actually due to a
fundamental concept, concerning only solutions of hyperbolic equations, called

the domain of dependence.
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In the second part of this chapter, we deal with an inverse problem for a dis-
sipative wave equation and we prove a uniqueness result, outside the cloacking
region, for the determination of an absorbing coefficient of first order, appearing

in this equation.

Throughout the rest, the domain of propagation is modeled by the cylinder
Q = Q x (0,7), where (2 is assumed to be a bounded domain of R", n > 2 with
a smooth boundary I' = 9f). We assume without loss of generality that () is of

origin 0. We denote by ¥ =T" x (0, T) its lateral boundary.

2.2 Local non-uniqueness in determining

time-dependent coefficients

We consider the following second order initial boundary value problem

O2u — Au+ a(z, t)0u + b(z,t)u =0 in Q,
u(-,0) =0, du(-,0)=0 in Q, (2.1)
u=f on ¥,

with f € H'(X), b € C}(Q) and a € C*(Q). Our goal is to show that there is no
hope to recover the time-dependent unknown coefficients a and b over the whole

domain () since the initial conditions are zero.
Before stating the main result of this section, let us first start by introducing
some notations. We denote by % the following conic set

Diam (£2)

%z{(m,t)eQ, o] < 2252 ogthiam(Q)}.

2

47



Di Q
Moreover, for ¢ € (O, 1am())

, we define the set €, as follows

o= |J Z()= |J €n{t=a}.

0<a<t/ 0<a<t/

Finally, we denote by S = 0% N (2 x (0,t')) and 0%, = SU 2(t') U 2(0).

Our main interest lies in showing a non-uniquness result in the cloaking area
¢, for the identification of the time-dependent coefficients a and b arising in the
equation (2.1), from measurements given by the so called Dirichlet-to-Neumann

map defined as follows:

Definition 2.2.1. Let a € W(Q) and b € L>(Q). The hyperbolic Dirichlet-to-

Neumann map is defined as follows

Aup: H'(D) — LX)

f —  dyu,

with w is the solution of (2.1). We recall that here v denotes the unit outward

normal to I' a at x and 0, stands for Vu-v.

In view of Theorem 1.2.1, one can see that A, is continuous from H'(Y) to

L*(X). We denote by || A, ;|| its norm in L(H'(2), L*(X)).

2.2.1 Preliminaries

In this section, we prove a fundamental result borrowed from [23] We need first

to state the following classical inequality which can be found in [13]

Lemma 2.2.1. (Gronwall’s inequality) Let an interval I be [a,+00) or [a,c| or
la,c) with a < c. Let o, B and u be real valued functions defined in the interval I.
Suppose that [ and u are continuous and that the negative part of « is integrable

on any closed and bounded subinterval of I. Then, we have
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1. If the function (B is non-negative and u satisfies the integral inequality

u(t) < aft) + /:B(s)u(s) ds, foranytel,

then u satisfies
t t
u(t) < aft) —I—/ a(s)p(s) exp (/ B(r) dr) ds, foranyte l.
2. If, in addition the function « is non-decreasing, then,
t
u(t) < a(t) exp (/ B(s) ds).

Proposition 2.2.1. Let us denote by u the solution of the dissipative wave equa-

tion (2.1). Then, u(x,t) =0 on the set €.

Proof. We denote by P = 92 — A + a(z,t)0; + b(z,t). A simple calculation gives

us

[ﬁa 2Pu(z,t) Qpu(z,t)dedt = 1@ 207u(xw, t)Opu(z, t) do dt — Lfa 2Au(z, t) Opu(z, t) de dt
+/ 2a(z,t)|0u(z, 1)) dz dt+/ 2b(x, t)udyu dz dt
Ca Ca
_ / 0,10, + |Vul?) dz dt +/ S 0, (O Oyu) da dt
%a it

+ / 2a(z,t)|0u(z, t)|* dz dt + / 2b(z, t)udyu dz dt.
Ca Ca
Then, using the above identity, we see that

[fa 2Pu(x,t)0wu(x,t) dxdt :/ oe(x,t) dr dt—}-[g > 0;X;(x,t) dx dt

Co « j:1

2
+ /{{) 2a(a, )du(e, O dedt,+ /{f 20(a ula. (. 1) de dt.

where e(z,t) = [Qwu(z,t)* + [Vu(z, t)|* and X;(x,t) = —20,u(z,t)0;u(x, t). Next,
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by applying the divergence theorem, one gets

lga 2Pu(x,t)0u(x,t) de dt = /S (e(x, t)n+ 3221 Xi(x, t)w) do + /@(tl)e(x, t') dx

- e(x,())dx—i—/ 2a(m,t)|atu(x,t)|2dxdt—|—/ 2b(z, t)ududx dt, (2.2)
2(0) G Ca

where do denotes the surface element of S and the vector (n, yy, pa, ..., ptn) € R*H

is the outward unit normal vector at (z,t) € S such that
n=0Q )" (2.3)
j=1
On the other hand, from Cauchy-Schwartz inequality and (2.3), we can see that

[t 0n+ 30 X s )dor

j=1

> /S(|8tu(x,t)\2 + | Vu(z, )|?) n — 2|0mu(x, t)||Vu(x, t) | ndo > 0. (2.4)
Then, since e(x,0) = 0 we get from (2.2) and (2.4) this estimation

/ e(z,t')dr < / 2Pu8tu(x,t)d$dt—/ 2a(z,t)|0pu(z, t)|? dx dt
() Ca Ca

— . 2b(x, t)(z, t)u(x, t)0(x, t) dx dt.

Now, using the fact that Pu(z,t) = 0 for any (z,t) € 6, we get

tl
/ < 9 . |
/@(t,) e(z,t") dr < C/o /@(t) (e(:c,t) + |u(z, t)| ) dx dt (2.5)

Now bearing in mind that

()2 = |u(x,0)\2+/0t/ On(|ulz, )|?) dt < /Otle(a:,t) du. (2.6)
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Thus, from (2.5) and (2.6) we deduce that

/@(t/) (e(m,t’) + |u(:p,t’)|2> dr < /Ot/ /@(t) <6(x,t) N |u(x,t)|2> du .

In view of Lemma 2.2.1, we end up deducing that u(x,t) = 0 for any x € 2(t)
and ¢’ € (0, Diam(£2)/2). This completes the proof of the lemma. O

2.2.2 The non uniqueness result

From proposition 2.2.1, one can see that the unique determination of the coeffi-
cients a and b appearing in the wave equation (2.1) from the knowledge of the
Dirichlet-to-Neumann map is not guaranteed in the conic set %, which can be

stated as follows.

Theorem 2.2.1. Let a € WH®(Q) and b € L>°(Q). such that Supp (a) C € and
Supp (b) C €. Then, we have A,p = Agy.

Proof. Let f € H'(X) and u satisfy

O2u — Au+ a(z,t)0u + b(z,t)u =0 in Q,
u(z,0) =0, du(r,0)=0 in Q,
u=f on .

From Proposition 2.2.1, we have v = 0 in the conic set %,. Then, using the fact
that Suppa C € and Supp (b) C €, we deduce that u solves also the following

hyperbolic boundary-value problem

v —Av=0 in Q,
v(z,0) =0 = 0w(z,0) in €,
v=f on X.
Then, we conclude that A,,(f) = Ago(f) for all f € H'(X). O
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2.3 Uniqueness in determining a first order

time-dependent coefficient

In this section, we aim to treat the inverse problem of determining a time-
dependent coefficient of first order appearing in a dissipative wave equation.
More precisely, our objective is to adress the uniquness issue for the inverse
problem of determining the absorbing coefficient a appearing in the following
equation

O2u — Au+ a(z,t)ou =0 in Q,

u(-,0)=0, du(-,0)=0 in Q, (2.7)

u=1f on X,
where f € H'(X), and the coefficient a € C*(Q) is assumed to be real valued.
In light of Theorem 1.2.1, it is well known that if the compatibility condition is

satisfied, thatis f(-,0) = 0, then, there exists a unique solution « to the equation

(2.7) that belongs to the following space
w e C([0,T], H' () N C'([0,T], L*(2)).
Moreover, there exists a constant C' > 0 such that we have

10vullzzs) < 1 fllenesy,  f € H(D), (2.8)

where v denotes the unit outward normal to I' at  and J,u stands for Vu - v. In
the present section, we prove that the knowledge of the Dirichlet-to-Neumann
map A, := A, can uniquely determine the time-dependent absorbing coefficient
a, but only in precise subset of the domain () and provided that it is known

outside of this region.
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2.3.1 Backward and forward light cones

This section is devoted to set some notations that we will use in what follows.
Let r > 0 be such that 7" > 2r and Q C B(0,r/2) = {:c eR", |z| < r/2}. We set

Q. = B(0,7/2) x (0,T"). We consider the annular region around the domain (2,
M.:{xER”, ;<|x\<T—g},
and the forward and backward light cones:

%ﬁ:h%we@wm<t—ft>ry

2 2
— r T
%nzﬁawe@,m<T—2—@T—2>*,

Moreover, we denote
Qi=¢"N¢ and Q..=0QNQ;, and Q.;=QN%E .

We remark that the open subset @), . is made of lines making an angle of 45°
with the t-axis and meeting the planes t = 0 and ¢t = T outside (),. We notice that
Q- C @ and that in the particular case where (2 = B(0,r/2), we have Q),.. = Q;
(see Figure 2.1).

Finally, we introduce the admissible set of the absorbing coefficients a. Given

ap € C*(Q,) and M > 0 we define

Alag, M) ={a € C*@,)a=ay in Q\Qu. lallexq <M}
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Figure 2.1: Particular case: Q = B(0,7/2)

Having said that, we move now to give a preliminary identity:

2.3.2 A preliminary identity

The main purpose of this section is to establish a preliminary identity for the
absorbing coefficient a appearing in the wave equation (2.7), by means of the
geometric optics solutions constructed in Chapter 1. Let w € S™ !, ay, as €

Al(ag, M). We set
d(et) = (@) (1) = exp ( _ ;/Ota(x +(t = s)w, 5) ds),

where a; and aj are given by

aj (z,t) = exp <; /Ot ar(z+(t—s)w, s) ds), ay (z,t) = exp <—; /Ot as(z+(t—s)w, s) ds).
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Moreover, we define a in R"*! by a = a; — a; in Q, and a = 0 on R*™1 \ Q,.

Lemma 2.3.1. Let ¢ € Ci°(<,.) and a1, as € A(ag, M). Assume that A,, = Ag,,
then, the following identity holds

/Q a(z, )2 (z + tw)a(z, ) da dt = 0. (2.9)

Proof. In light of Lemma 1.3.2, there exists a geometrical optics solution u™ to the

equation
O2ut — Aut + ag(x,t)Out =0 in Q,
ut(x,0) = du™(2,0) =0 in Q,

in the following form
ut(z,t) = (x4 tw)ag (z,t)e™ @ Lotz 1), (2.10)

corresponding to the coefficients ay, where ri (z,t) satisfies (1.13), (1.14). We
denote by f\ the function

fk(xa t) = U+(ZL’, t)|2] = (,0(17 + tw)&; ({Ij7 t)@w‘(x "’H‘t)'
We denote by u; the solution of

O2uy — Auy + ay(z,t)0u; =0 in Q,
uy(z,0) = Quq (2,0) =0 in €,
uy(z,t) = falz,t) on X.

Putting u = u; — u*. Then, u is a solution to the following system

O2u — Au+ ay(z,t)0u = a(z, t)ou™ in Q,
u(z,0) = dyu(z,0) =0 in Q, (2.11)
u(z,t) =0, on X%,
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where a = as — a;. On the other hand Lemma 1.3.3 guarantees the existence of a

geometrical optic solution u~ to the adjoint problem of (2.7)

OPu™ — Au™ — ay(x, )0~ — ar(z,t)u” =0 in Q,
u (z,T) = 0w (2, T) =0 in €,

corresponding to the coefficients a; and —d,aq, in the form
u(z,t) = (x4 tw)e NG = (1, 1) + ) (, 1), (2.12)

where 7, (z,t) satisfies (1.21), (1.22). Multiplying the first equation of (2.11) by

u~, integrating by parts and using Green’s formula, we obtain

/ a(z,t)0u™ u” dedt = / (Aay — Aay)(f2) u™ dodt. (2.13)
Q )
On the other hand, by replacing ut and u~ by their expressions, we get

/Qa(x )0 u” dedt = /Qa(x )0y (x4 tw)e™ @ TIGE T do dt
+/ a(z, t)p(x + tw)er@ D oat s dr dt —I—/ a(x, t)0ypo(x + tw)p(z + tw)(ag ay )dz dt
+/ a(x, t)p*(z + tw)oay a; dx dt + z)\/ / az, t)p(x + tw)e* gt - da dt
0 a(z, t)(x + tw)e @ DG 9,rf de dt+2)\/ a(x, t)p*(z + tw)(aga, ) do dt

+ /Q a(z,t)Oriry dvdt = z)\/Q a(x, t)p?(z + tw)a dr dt + (),
where @ = dg a; . Then, in light of (2.13), we have
iA /Q a(z, ) (@ + tw)a(z, t) da dt = /E (Auy — Au))(f) u= dodt —T(N). (2.14)
Note that for A\ sufficiently large, we have

1Z:] < Cllol s @ny- (2.15)

56



Hence, using the fact that A,, = A,,, we deduce from (2.14) and (2.15) and by
taking A — +oo the desired result. O

2.3.3 The uniqueness result

We move now to give and prove the main statement of this section which lies
in the unique determination of the coefficient a appearing in the wave equa-
tion (2.7) from the Dirichlet-to-Neumann map A,. We need first to define the

following conic set
={(7) e R*"\ {O0rn} xR, |7| < [¢]} (2.16)
Theorem 2.3.1. Let T > 2Diam(Q) and a; € A(ag, M), i = 1,2. Then, we have
Ao, = Ao, implies ay = a1, on Q..

Proof. The proof is based on the result we have already obtained in the previous

section. In light of (2.9), we have as A goes to +oo, the following identity

/Qa(a:,t)gf(:c + tw) exp ( — ; /Ot a(z+ (t — s)w, s) ds) dxdt = 0. (2.17)

Then, using the fact a(x,t) = 0 outside @,.. and making this change of variables

Yy = T + tw, one gets

//n y — tw,t)e (y)exp(—;/Ota(y—sw,s)ds>dydt:0.

Bearing in mind that

/ /n y — tw, t) go(y)exp(_;/Ota(y—sw,S)ds>dydt
:—2/0 /n(p2< 5|:exp( ; ta(y—sw,s)dsﬂdydt
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— —Q/Rn @2(y>{exp < _ ;/()Ta(y — 5w, 8) ds) - 1] dy.
we conclude that
/Rn ©*(y) {exp < _ ;/OT a(y — sw, s) ds) - 1] dy = 0. (2.18)

Now, we consider a positive function ) € C§°(R") supported in the unit ball B(0, 1)
such that ||¢||r2@n) = 1. We define

pn(x) = h"/%(W), (2.19)

where y € .. Then, for h > 0 sufficiently small one can see that Supp ¢, C
Cs° () and satisfies

Suppr, N =0, and Suppey, =TwNQ = 0.
Then, as h goes to 0 we deduce from (2.18) with ¢ = ¢, that
1 (T
exp(— 7/ a(y—sw,s)ds) —1=0.
2 Jo
Since a = as — a; = 0 outside @), ., we conclude that
/ aly —tw, t)dt =0, ae yco,, wecS" (2.20)
R
On the other hand, if |y| < g, we notice that
aly —tw,t) =0, Vt € R. (2.21)

Indeed, we have

.
ly —tw| > [t —y| >t - 3 (2.22)
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hence, (y —tw,t) ¢ €7 if t > r/2, from (2.22). As (y—tw,t) ¢ €, if t <r/2, then
we have (y — tw,t) ¢ €7 D Q.. for t € R. This and the fact that a = as —a; =0
outside @, yield (2.21), and consequently,

-
—tw,t)dt =0 < —.

/Ra(y w, ) =35

By a similar way, we prove for |y| > T—r/2, that (y—tw,t) ¢ €. D Q,., for t € R.

Then we obtain
/Ra(y —tw,t)dt =0, ae. y¢ o, weST (2.23)
Thus, by (2.20) and (2.23) we find
R(a)(y,w) =0, ae yecR" weS"

We now turn our attention to the fourier transform of a. Let £ € R™. In light of
Lemma 1.4.1, one can see that @(&,w- &) = 0. Let us consider & € S"~! such that
£-& =0. Setting

-

1— —
€
then (§,7) = (§,w-&) € E. We then deduce that a(§,7) = 0 in the set E. By an

T
w:7€+ -f/ESnil,
€17

argument of analyticity, we extend this result to R™*!. Hence, by the injectivity
of the Fourier transform we get the diserd result. This completes the proof of

Theorem 2.3.1.
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CHAPTER 3

Quantitative estimate of the
unique continuation for analytic

functions

The main interest of this Chapter lies in establishing an important technical result
for analytic functions. Taking inspiration from estimates given in [1][Theorem
3] (see also [48] and Chapter 3 in [32]), we will show an observability inequality
that plays a crucial role in proving the main stability results given in the next

chapters.

3.1 Preliminaries

In order to express the main goal of this scetion, we start first by recalling

Hadamard’s three cercle theorem that will be used in what follows.

Theorem 3.1.1. Let r, r1, ry satisfying 0 < ry < r < ry. Let F' be a holomrphic

function of a complex variable in the ball B(0,rs). Then, we have

1 om0y < NE oo 115,

log 22
where 0 = 2 &_.
log =

1
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we shall now prove the following Lemma

Lemma 3.1.1. Let J be an open interval in [—%, %], and g be an holomorphic
function in the unit disc D(0,1) C C satisfying
l9(z)| <1, |2[ <1 (3.1)

Then, there exist v € (0,1) and N > 0 such that the following estimate holds

||g||L°°(B(O,%)) < N||9||Z<>°(J)>

where N and ~ are depending only on |J|.

Proof. We should first notice that for all n > 1, there exist (n + 1) points such
that

Lo . 1
—— <=z o< xy < o
5 =0 5

with ; € J, i = 0, .., n, and satisfying the following estimation

Let z € C. We denote by

n

Py(z) =Y g(@)[[(z — x) [ [ (wi — ;) 7"

i=0 A #i

In order to prove this lemma, we need first to find an upper bound for |P,(z)|. To
l/

do that we first notice that for I’ > [ we have zy — x; = Z (x; — x;_1). Hence,

i=l+1
(3.2) entails that
(%—%)Z(i—j)m J <t
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As a consequence we have the following estimation

Jl_[#|mi—$j| 1;[ l—] n+1)3111(j_2)(n+1) = !(n+1)i( — )'W(S?))

On the other hand, it is easy to see that for |z| < % and x; € J, j = 0,..,n, we

have

11z =2 < TT (2 +150) < 1,

JFi JFi

Putting this together with (3.3), we end up getting this result

n ) n—|—1) 6 "
co — () 3.4
<yt o <e () lalmo 3

=0

The next step of the proof is to control |g(z) — P,(z)|. For this purpose, let us
introduce the following function: for all £ € C, such that || = 1, we denote by

G(§) = g(§) ﬁ §—xj)”

Applying the residue Theorem, one obtains the following identity

1

/|£|=1 G(§)d¢ = (RGS(G, z) + iRes(G,x,J) = (g(z) _ Pn(z)> ﬁ(Z—xj)_l

2 =0

From this and the hypothesis (3.1), it follows that for |z| < 3, and z; € J, we have

oo -RE<2 (L )T -0 (D) e

Combining (3.4) with (3.5), one gets

" 6 \"
HQHLOO(B(OJ/Z))SZ(S) +e 7l gllzee(ry, n>1.

To complete the proof of the lemma, we need to minimize the right hand side of
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the last estimate with respect to n. To this end, let us define the following function
¢(x) — 9~ log(8/7) +e ||g||LOO(J) e log(G/IJ\)7 r eR.

A simple calculation show that the function v reaches a minimum at this point

. {log( 48 )}1104 log(8/7)
0= =T .
7|J] e llgllze< () log(6/]])
Then, we end up getting the desired result. 0

We move now to establish the second result by the use of Hadamard’s three-

circle theorem and Lemma 3.1.1.

Lemma 3.1.2. Let ¢ be an analytic function in [—1,1], and I an open interval in

[—1,1]. We assume that there exist positive constants M and p such that

ME!
(2p)%’

™ ()] < k>0, se[-1,1]. (3.6)

Then, there exist N = N(p,|I|) and v = ~v(p,|I|) such that we have
lo(s)| < NngH“’w(I)Ml’V, for any s € [—1,1]. (3.7)
Proof. In light of (3.6), we have for all s € [-1,1],

< Y M(2p) Mz -l

k>0

> 6 (s) (= — )"

k>0

This entails that for all s € [—1,1] and for all z € B(s, p), we have the following

estimation

< MY (2p)7FpF <2M, (3.8)

k>0

> o(s) (= — )"

k>0

which implies that ¢ can be extended to an holomorphic function in D, = UB(s, p)
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for —1 < s < 1. We need first to construct a specific open interval in [—%, %] to

apply Lemma 3.1.1. To this end, we notice that

-11c U L= U [sj—g,sﬁp, (3.9)

1<j<no 1<j<no

ot

where we have putted s; = =14 (25 — 1)p/5, 5/p < ny < 5/p+ 1/2 and assumed
that I, N [;; = 0, for all j, j' =1,...ng, j # j'. Therefore, the open interval I can

be written as the meeting of (I; N 1), for 1 < j < ng where

([] ﬂ[) ﬂ (Ij/ ﬂ[) = @, for j, jl = 1,...,710.
J#3’
Now, we fix jo € {1,...,no} such that |, N | = Inax [1; N I]. We define J;, , =
SJSno
1

(Ij,NI—sj,). In light of (3.9) , we deduce that J;, , is an open interval of [, £].

1
P 5

Next, we consider the function g defined on D(0,1) as follows

(85, + p2)

9(2) = =547

The estimate (3.8) entails that |g(z)| < 1 for |z|] < 1. Bearing in mind that
the function g is holomorphic in the unit disc, we deduce from Lemma 3.1.1 the
existence of two constants N = N(|I]) and v = 7(|I|) such that the following

estimate holds

lollz=(zo1/2y < Nlgllteir, ) < NEM) @l ,0n-

P

This combined with the fact that ||gHLoo(B(071/2)) = (2M)_1“SOHL""(B(SJ'O,/J/?)) yleld

the following result

10l oo (Bsj/2) < NNl Foo M. (3.10)

Now, we aim to extend this result to the interval [—1,1]. To this end, let r > 0,
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satisfying

N

<r<2r<p. (3.11)

Let (a;);>1 = (s;);>1 be a sequence such that [-1,1] € | J B(ay,2r) and satis-
fy1ng 1<j<ng
B(ajy1,7) C B(aj,2r) for j € {jo,....,n0}
(3.12)
B(aj_1,r) C B(a;,2r) forje{l,...jo}

In view of Hamdamard’s three-circle theorem, using (3.10) and (3.11) we get

oo Basy 2 < 1@ Loe(Bagy ) 1PN Basy ) < Vol ZoeyMT7, (3.13)

where 6 = %. Then, using the fact that B(aj1,7) C B(aj,2r) for j €

{jo,---»n0}, we deduce
[l Lo (Blajor1,m) < N@llLoe(Blag, 2r) < N||g0||700(1)M1‘7.
From this and Hadamard’s three-circle theorem, we obtain

0’ 1-6’ 1-
ol (Bajyi1.2m) < NP2 (Blasy 1) 1P L (Blasg 1) S NP Lo (M7,

log p/2r

where 0’ = 3 )
ogp/r

So, from (3.12) and a repeated application of Hadamard’s three

circle theorem, we get

10l oo (B(aj.2r) < Nl foon M, 5 € {do + 2,00}

By a similar way, we prove that

el a2 < Nl zoe M, 5 € {1, o}
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As a consequence, we obtain

no
el zoe iy < D el oo ary < Nl foo M7
=1

This completes the proof of the Lemma. O

3.2 The quantitative estimate

We now move to prove the main interest of this chapter which claims conditional

stability for the analytic continuation. For p > 0 and x € (N U {0})""!, we put
k| = k1 + ... + Ens B(0,p) = {z e R",|z| < p}.

Theorem 3.2.1. Let O be a non empty open set of the unit ball B(0,1) C R,
d>2, and let F be an analytic function in B(0,2), that satisfy

Mk

O°F| 1 <, Vke(Nu{o})!
10" Fllz~ o) < Gy ¥ € (NU{OD)
for some M >0, p >0 and N = N(p). Then, we have

IFll oo B0.1)) < NMY7F |0

where v € (0,1) depends on d, p and |O)|.

Proof. Notice first that there exists a sequence of open intervals (I;); such that
E=15Lx..x1Ijx..xI;CcOcB(0,1).

Let © = (21,22, ...,24) be fixed in B(0,1). We consider the analytic function ¢,
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defined as follows

0i(s) = F(x1, ..y @i, S, Tjs1, .y Ta), S € [—1,1].

Assume that there exist positive constants M and p such that

ME!
(2p)"

i ()M < s € [-11],

(3.14)

Then, in view of lemma 3.1.2, we conclude the existence of of N = N(p,|I;|) and

v =(p,|I|) such that we have
0i(3)] < NllgslPu) M, s € [1,1],
This and (3.14) yield
|F(z)| < N; sup |F(z)[ M™%,
wj€l;

Therefore, by iterating (3.15), we get

|F(£U)| < N1N;1 ...Ngl'"’m_l sup |F(x)|71'“7dM1_'71~~’7d.

zelR

This completes the proof of the Theorem.
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CHAPTER 4

Stable determination of a zero-th

order time-dependent coefficient

The contents of this chapter are
available in a paper published at

Inverse problems 31, 2015 (21pp).

4.1 Introduction

In this chapter, we deal with an inverse problem that concerns the wave prop-
agation phenomenon described by the following hyperbolic partial differential

equation with a constant speed which is taken equal to one

O2u— Au+b(z, t)u=0 in @ :=Qx(0,7),
u(+,0) =wug, Su(-,0)=u; in Q, (4.1)
u=f on ¥ :=1x(0,7),

where u, and u; are the initial conditions and f is the Dirichlet data which is
used to probe the system. This equation is disturbed by an electric potential b

which is a function of both varibales: the spatial variable x that is assumed to
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live in a bounded domain 2 C R” with smooth boundary I" and the time variable
t € (0,7). Here, the time-dependent coefficient of order zero b models some
of the physical properties of the medium where the wave propagates and we
are interseted in the recovery of this coefficient from various sets of data. From
Chapter 1, it is well known that if b € C'(Q), the initial conditions (ug,u;) €
H'(Q) x L*(Q) and the Dirichlet data f € H'(X) and satisfies the compatibility

condition, then (4.1) is well posed.

The inverse problem we deal with in this chapter, is to know wether the time-
dependent potential b can be stably recovered in some specific subsets of the
cylindrical domain @, from measurements made on the solution u of the wave

equation (4.1). We will consider three different sets of data and we will treat

the stability issue for the inverse problem under consideration in three different
cases. In the first and the second case, we will assume that the initial conditions
(uog,up) are fixed at zero and we will prove that in these two cases it is possible
to recover the time-dependent coefficient b but only in some specific subsets of
the cylindrical domain. And if we want to recover the unkown coefficient over

the whole domain, we need to further vary the initial conditions.

In order to give the main statements of this chapter, we need first to introduce

the set of the admissible coefficients b: Given by € C*(Q,.) and M > 0, we define

A, M) = {b € CH@,), b="by in Q,\ Qo [bll1eig) < M},

and

Ai(bg, M) = {b € C'(@,), b="by in Q,\ Qrs, IIb (@) < M}

where the sets @),, Q). and @), ; are defined in Section 2.3.1.
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4.2 Determination of the electric potential from

boundary measurements

We start by considering the first case, in which we treat the inverse problem of
determining the electric potential b appearing in the wave equation (4.1) with
(ug,u1) = (0,0), from measurements given by the Dirichlet-to-Neumann map
A, := Ao, defined as in Defintion 2.2.1 with a = 0. Obviously, the determination
of the coefficient is not guaranteed on the entire time-space domain () since the

initial conditions are zero (see Chapter 2, Section 2.2).

Actually, this problem was treated by Ramm and Rakesh [36] and they proved
a uniqueness result which is valid only in the region (), . and provided that the
time-dependent coefficient is known outside of this region. Since we know that
it is hopeless to recover the potential b everywhere, we will then focus on the
region arised by Ramm and Rakesh and we will prove that we can even have
a stability result in determining b from the Dirichlet-to-Neumann map A,. We
start by considering the geometric optics solutions constructed in Chapter 1 of

the following form
ut(z,t) = ¢z, )N 4 (2, 0),
where ¢ is given by (1.8) and satisfies supp ¢ C <7, in such a way we have
supppeNQ =0 and (suppp£Tw)NQ =0, Ywe S

Here &7, is the annulus set defined in Section 2.3.1. In the rest of this section,
for by, by € A*(by, M), we define b in R by b = by — b, in Q, and b = 0 on
RnJrl \ @r'
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4.2.1 An estimate for the light ray transform

This section is devoted to establish an estimate linking the light-ray transform of
the time-dependent coefficient b to the Dirichlet-to-Neumann map A,. We start

by showing the following preliminary estimate

Lemma 4.2.1. There exists C > 0, such that for any w € S"™! and p € C°(4,),

the following estimate

T 1
‘A/ﬁ@—mﬁﬁ@mﬂﬂscpw%—mm+gnm%ww (12)

holds true for any sufficiently large A > 0.

Proof. In view of Lemma 1.3.2 and using the fact that supp ¢ NQ = 0, there exists

a geometrical optics solution u™ to the equation

(02 — A+ by(t,z))u(t,z) =0 in Q,
u(.,0) = du(.,0) =0 in €,

of the form

ut (,1) = Bla ) ) s (o, ), (4.3)

where 7y satisfies

+ +
at")\\t:o =T\ = 0, 73 =0,

and

> Q

Iz < 5 el e (4.4)

Let us denote by f, the function

At z) =ut(z,t) = ¢z, 1)@t (1 1) € B,
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and denote by u~, the solution of

(02 — A+ by(z,t))u(2,t) =0 in Q,
u=(.,0) = Q= (z,0) =0 in Q,
u”(z,t) = fa(z,t) on X.

Putting u(z,t) = u™(z,t) — u™(x,t), we get that

(02 — A+ by(x, ) u(x, t) = b(t, z)u™(z,t) in Q,
u(.,0) = du(.,0) =0 in €,
u(z,t) =0 on X.

Applying Lemma 1.3.3, for A large enough and using the fact that supp p+TwN2 =

(), we may find a geometrical optic solution u~ to the backward wave equation

(02 — A+ b (t,z))u(t,x) =0 in Q,
uw (., T)=0u (.,T)=0 in €,

of the form

u” (1) = g(a, t)e” A 42, ), (4.5)

where r) satisfies

atth:T =T\t=r = 0, "\ = 0,

and

I3 llzz@) < 5 llellms @ny- (4.6)

> Q

Consequently, by integrating by parts and using Green’s formula, we obtain

/(O?b(:x,t)qu(x,t)u_(x, t)dedt = /Q (@2 — A+ by (x, t)) w(z, t)u” (z,t) dx dt

_ /Z (A, — Ao, ) fa(z, yu (@, t) do dt,
(4.7)
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So, (4.3), (4.5) and (4.7) yield

/Qb(t x)¢*(z,t) dx dt+/ b(t, x)ry (x, t)ry (z,t) do dt
+/ (t,z)p(z,t) (7’)\ (z,t)e™" Az - wt) + 7y (z,t)e A “H)) dx dt

:&ém@—AMﬁQW) “(w,t) do dt. (4.8)
From (4.8), (4.4) and (4.6) it follows that

C
’/ x,t) ¢*(x,t) dxdt‘ / [(Agy — Agy) () va(z, t)\dadt—l— ||<P||H3 (R7)>

where the constant C' > 0 does not depend on A. Hence from the Cauchy-Schwarz

inequality and the identity fi(x,t) = ug\(z,t) on X, we obtain
[ a6ty o] < 1, — A s s sy + 5 Nl (49
Further, as 7 = 0, on %, we deduce from (4.9) that
2 1 2
LM%WM%WMMSCHMfWMWA—UMWWU—HMﬂ + 5 el ) -
Bearing in mind that
luy = rxllm@) < CAlellas@n),

lu* =) < O el

we end up getting that

1
| o) 6ty dwdt] < © (Nl1n, = Al + 5 ) el
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Therefore using the fact that b(x,t) = 0 outside Q., we get

b(x — tw, t) p*(x) dx dt

n

1
< € (N8, = Aol + 5 ) Il

This completes the proof of the lemma. O

Using the above lemma, we can estimate the light-ray transform of b as follows:

Lemma 4.2.2. There exist C > 0, > 0, 0 > 0, and \g > 0 such that for all

w € S™ L. we have
1
RO),«) < C (M)An =M+ 55) s aeye R,

for any X > Xo.

Proof. Let ¢ € C°(R™) be a positive function which is supported in the unit ball
B(0,1) and such that ||¢||;2@n) = 1. Define

“n r—vY
pulw) = (S, (4.10)
where y € .o7.. Then for ¢ > 0 sufficiently small we can verify that
supp . NQ =0, and suppp. = TwNQ = 0.

Moreover we have

T
/ by — tw, t) dt‘

// (z — tw, t) p2(z d:cdt‘ ‘// Y —tw,t) — b(x —tw,t)) 2 (z)drdt].

y —tw,t) o2 (x )dxdt‘

Since b € C1([0,T] x R™), we have |b(y — tw, t) — b(x — tw, t)| < C'|z — y|. So upon
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applying Lemma 4.2.1 with ¢ = (., we obtain

T 1
] | bty = 1) dt| < C (¥, = Aull+ 5 ) Ioelliny + € [ 1o =yl e2(a) do
(4.11)
On the other hand, we have

| el r3@ny < Ce3, /Rn |z — y| 2 (x) dx < Ce.
So we infer, from (4.11) that

’ 1
‘/ b(y_tw’t) dt S C()\?)HAbz _AblH +>\> 576+C8.
0

Taking € = €79/, we find two constants 6 > 0 and 8 > 0 such that

! 1
‘/ by — tw, ) dt| < C (W\Abz A +X$>_
0

Since b = 0 outside (@),, this entails that
’/Rb(t,y — tw) dt‘ <C </\5HA,;,2 — Ay, || + ;5) , aey€d, weS"T (4.12)
On the other hand, if |y| < g, we notice that
b(t,y —tw) =0, Vt € R. (4.13)

Indeed, we have
r
ly —tw] =t =yl =t -3,

5 (4.14)

hence, (y — tw,t) ¢ €7 if t > g, from (4.14). As (y — tw,t) ¢ €7 if t < g, then
we have

(y —tw,t) ¢ €7 D Q,, teR.
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This and the fact that b = by — by = 0 outside Q., yield (4.13), and consequently,
r
[etty—twyat=o, |y <’
R 2
By a similar way, we prove for |y| > T — Z, that
(y —tw,t) ¢ €. D Qs tER,
and then obtain
/ by —tw,t)dt =0, ae y¢ .o, weS" (4.15)
R
Thus we get,
1
IR (y,w)| = ‘/ by — tw, 1) dt‘ <cC <>\5||Ab2 . XS) L ae ycRY, weS™,
R

by (4.12) and (4.15). This completes the proof of the lemma. O

This allows us to deduce an estimate for the Fourier transform of the coefficient

b which is the goal of the next section.

4.2.2 An estimate for the Fourier transform

In this section, we aim to control the Fourier transform of b with respect to the
Dirichlet-to-Neumann map for all (¢,7) € E, where FE is the conic set given by

(2.16).

Lemma 4.2.3. There exist C > 0, f > 0, 0 > 0 and A\g > 0, such that the

following estimate

~ 1
e, < € (Vs = Bl +55)
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holds for any (§,7) € E and X\ > \.

Proof. Let (1,€) € E and ¢ € S"! be such that £.¢ = 0. By defining

_ T s
CEEE ST e

we have w € S" ! and w- ¢ = 7. From Lemma 1.4.1 one can see that

[ RO e Sy = Bew-) = bEn)
We set (§,7) = ({,w-¢&,) € E. Since suppb(t,.) C 2 C B(0, ), then we have

R(b WL dy = b(E, 7).
Loz RO ) e Sy =b(6,7)

Applying Lemma 4.2.2, we obtain the desired result. U

4.2.3 Stability estimate for the electric potential

We are now in position to state and prove the first main result of this chapter.

Theorem 4.2.1. Let T' > 2 Diam () and by, by € A*(by, M) satisfy the following
identity
O:b1(t,x) = O0xbo(t, ), (t,x) € 0Qy N OQy.. (4.16)

Then, there exist two constants C > 0 and p; € (0,1), such that we have
16 = ballir1(@ry < € (A6, — Auall + o A5, — Ao [,

where C depends only on Q, M, T, and n. If we assume in addition that by, by €
H(Q), s > =, verify |bi

mor Q) < M, fori=1,2, and some constant M > 0.
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Then there ezist two constant C' > 0 and py € (0,1) such that we have
L&
||b1 - b2||L°°(Qr,*) < C’ (||Ab1 - Ab2|| + |1Og ||Ab1 - Ab2”| 1) ’ ) (417)

We will prove the above theorem by the use of the analytic argument Theorem

3.2.1.

Proof. For fixed o > 0, let us set F,(§,7) = 5(04(5,7‘)), (&,7) € R™ML Tt is easily

seen that F), is analytic and we have for x € (NU {0})"!

|07 Fu (&, 7)] =

o blalg )| = 0% [ blatye 0 € dray

_ ‘ [ b (=)l yreietet € gy 0(4..18)

Rn+l

Therefore, from (4.18) one gets

O FL(E < [ bt @)l (2 + )5 dudt < b1, o (2T <C

Rn+1

Applying Theorem 3.2.1 to the set O = E N B(0,1) with M = Ce®, 2p = T2,
and where

E={(&7) e Rx (R"\ {Opn}), [7] < [£]},

we may find a constant v € (0, 1) such that we have
|[Fa(&,7)] = ba(é, )| < C | Foll ), (€7) € B(O,1).
Hence, since a £ = {alg, 1), (&,7) € E} = F, we get for (&,7) € B(0,«) that

b(&, 7| = [Fala (&, 7))

IN

Ce*t=7) HFaHZoo(m
a(l=y) ;1Y
Ce® b o (B(0,a)NE)

Ce (b7 &) (4.19)

IA

IN
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On the other hand we have

I =( [ (D BE AP arde [ (16 nP) e )
EE) i <a 7 &)

< C (@™ Bl pom) + 072 r|buL2<Rm>)

Thus it follows from (4.19) and Lemma 4.2.3, that

2/7 n+1 20&(1—7) 8 1 2 L 1/"/
Il gy < Cla™ e (N N[Ae, = Al + 55)" +
+
Y

nt1l 2a(l1—7) nt1 2a(l—7) . _
< C(a Ay, — Ay 2+ 0T AP g 2”).

n+3 a(l—y)

Let ap > 0 be sufficiently large and take o > ag. Set A = a7 e % . Since

a > ap, we can assume that A > )y, so we have

ntl  2a(l—v) = _
a e v AN =7

Therefore it holds true that

IN

Hszm < 6<n+1>;5<n+3> 2a(5+6>(1 )

‘ A, = Aa |+ a=2/7)
(™A, = Ay, |2+ a77)

Rn+1) C
< C

where N depends on 9, 3, n, and . In order to minimize the right hand-side of

the above inequality with respect to a, we set
1
= N‘ log HAbz - Abl” ’a
where we assume that 0 < ||Ay, — Ay, || < ¢. We obtain that

_ v/2
1Bll-10r0) < D1ty < C (A, — A |+ | log [[An, — A || 727)
C (1 An, = Aoy 7% + [10g [[ &g, — Mg, [[|71)(4.20)

A\
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Now if ||Ay, — Ap, || > ¢, we have

20M % 2CM
bl < Cllblr=@ry = — 75— < 5 16, = Ay, |72,

hence (4.20) holds. The estimate (4.17), is now an easy consequence of the Sobolev
embedding theorem and the following interpolation inequality. If 6’ > 0 is such

that s = n/2 + 2§, then, we have

1bll2=@..) < Cllallu=@..)
1—
< C HbHHﬁ(QM) ”b| ?{sﬂ(Qr,*)
1—
< Clbli o,
for some € (0,1). This completes the proof of Theorem 4.2.1. O

4.3 Determination of the electric potential from

boundary and final data

In this section, we aim to extend the stability estimate given by Theorem 4.2.1
to a larger region (), ; O @),.. We will consider geometric optics solutions similar
to the one used in the previous section, except in this time, we assume that the
function ¢ obeys suppy N Q = (. In particular, we do not assume that supp

¢+ TwN Q) =) anymore. Our observations are given by the following operator

Definition 4.3.1. We define the boundary operator %y as follows

Ry H'(X) — L*(X) x HY(Q) x L*(Q),
f — (Oyu, u(T,.), Owu(T,.)),

with w is a solution of the equation (4.1) with (ug,uy) = (0,0).

From Theorem 1.2.1, one can see that %, is continuous from H'(X) to L?*(X) x
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H'(€2)x L2(2). We denote by || % its norm in £ (Hl(z), L2(S)x H'(Q) ><L2(Q)> .

We start by showing the following lemma

Lemma 4.3.1. Let p € C°(R™) be such that suppeo NQ = 0. Then, there exists

C >0, such that for any w € S*~! the following estimate

T 1
I nb(x—tw,t>so2<x>dxdt|sc (V%0 — Bl + 5 ) Nl (221

holds true for any sufficiently large A > 0.

Proof. In view of Lemma 1.3.2, and using the fact that supp ¢ N Q = (), there

exists a geometrical optics solutions u™ to the equation

(02 — A+ by(x,t))u(z,t) =0 in Q,
u(-,0) = dwu(-,0)=0 in Q,

in the following form
ut(x,t) = ¢(a, 1)e= ) otz t), (4.22)
where 7y satisfies
(%r;tzo — rj\r‘tzo =0, T/J\FIE =0,

and

Iz < 5 el - (4.23)

> Q

Let us define by f) the function

Az, t) = ut(x,t) = oz, 1)@ (g 1) e %,
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and denote by wuq, the solution of

(aE—A—Fbl(.T,t))Ul(l',t):O in Qa
uy(z,0) = dyus \(z,0) =0 in Q,
ur(z,t) = falz,t) on X.

Putting u(t, z) = uy(z,t) — u™(x,t), we get that

(02 — A+ by(x,t)) u(x, t) = b(x, t)uT(z,t) in Q
u(z,0) = du(z,0) =0 in
u(z,t) =0 on X.

Applying Lemma 1.3.3, we find for A\ large enough, a geometrical optic solution

u~ to the backward wave equation
((93 — A+ bl(x,t)) u (z,t) =0, in Q,

of the form

w(,1) = @la, e PO s (a,8), (4.24)

where 7 satisfies

8t7"x|t::r == = 0, Tyx =0,

and

> Q

Iy lz2@) < < Nl s ny- (4.25)

Consequently, by integrating by parts and using Green’s formula we obtain

/Qb(x,t)um(x,t)u_(x,t) dedt = /Z(%§2 — %) (f)u(z,t) do dt
+/Q (23, — 2,) (£2) Opux (2, T) d
~ [ (- #) () (2. T) dr. (1.26)
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By replacing u™t (resp., u~) by the right hand side of (4.22) (resp., (4.24)) in the left
hand side of (4.26), we get from (4.23), (4.25) and the Cauchy-Schwarz inequality
that

C
‘/Qb(af,t) O (e t)dudt| < [[(%, = Z) (D)l e lle2w) + el @

(s, — 25,) ()l @ 10w (T, )l 2o

(5, — 28,) (Pl 2@ lu™ (T, )l 2

which entails

\/ () 6 (w, t) du dt| < ([(%n,— Z,) (P sy + 125 = Z2) (P e

1 NG
+[[(%y, — %) (f)| 720 )2(HU_H%Q(E)+Hu_(T>')”%2(Q)+||atu_(T7‘)H%2(Q))2+XH90||%{3(R")'

Next, setting
or = (u |z, w (T).), Ou (T, .)),

we may rewrite the above inequality as

C
VQb(I, £)¢° (t, ) da dt| < |[(Roy—Rs,) ()l L2m)xb @) L2(@) ||¢)\”LQ(E)XLQ(Q)XLZ(Q)_'—XHQOH?{?’(R")'

Since fy(t,z) = ut(z,t) on X, this yields that

C
|/Qb(93at)¢2($at) dx dt| < || %y, — P, || |0 |1 () DAl L2 m)x L2 @)x L2(0) + 3 11135 -

Further, as 5 = 0 on X we obtain

1
| o) 6% t) dwdt] <O (10, = ol =1zl ol @perxeeriey + 3 Nl )
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where

Py = (u_ —ry,u (T,.), O (T, )) .

Since 7, (T,.) = Oy (T,.) =0 in 2, we have

[o1allm@xrxexrze) < llu” =1y llm@) + lurlizz@ + [0, _rllr2 )

Moreover we have

lu™ = 71l < CX* el o),

Then, since b vanishes outside )y, then,

T 1
L L bl =t 8) (@) dodt] < © (3% — | + 5 ) Nl

This completes the proof of the Lemma. 0

As a consequence, we can control the light-ray transform of b as follows:

Lemma 4.3.2. There exists four constants C' >0, 3 >0, 6 > 0 and Mg > 0, such

that the estimate
1
IR(b)(y,w)| < C (Aﬁu% — %+ Xs) e yeR™

holds for all w € S*~ and for any X > ).

Proof. In order to prove this lemma, it will be enough to consider the sequence
(pe)e defined by (4.10) for a fixed y € R™\ Q, in a such way supp p. N Q = () for
sufficiently small ¢ > 0. From this, Lemma 4.3.1 and the fact that b = by — by
vanishes outside ()3, we obtain upon arguing as in the derivation of Lemma 4.2.2

the desired result. O

Having said that, we are now in position to state our second result.
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Theorem 4.3.1. Let T > 2 Diam () and by, by € A*(by, M) satisfy the following
identity
Opbi(x,t) = Oyba(x,t), (t,x) € 0Q, NOQ, 4. (4.27)

Then, there ezist two constants C > 0 and puy € (0,1), such that we have
||b1 - bQ|’H71(Qr,u) < C (H‘@h - ‘%Zm”ul + ‘ log ||‘@b1 - ‘%b2|||_1> ’

where C depends only on Q, M, T, and n. If we assume in addition that by, by €
H™(Q), s> 2, verify |bi

Then there ezist two constants C' > 0 and py € (0,1) such that we have

m Q) < M, fori=1,2, and some constant M > 0.

1\ M2
b1y = ballLe(@y) < C' (1%, — Ty | + 10g | %0, — 2B, |1| 7)™

Proof. Armed with Lemma 4.3.2, we prove Theorem 4.3.1 by repeating the same
steps followed in the proof of Theorem 4.2.1. O

4.4 Determination of the electric potential from
boundary and final data by varying the initial

conditions

In this section we deal with the same problem as in the previous sections, except
that the set of data is made of the responses of the medium for all possible initial

states given by the following operator:

Definition 4.4.1. We define the boundary operator L, as follows

T,: HY(Z) x HY(Q) x L*(Q) — L*(X) x HY(Q) x L*(Q),
(f,uo,u) — (Oyu, u(T,.), Owu(T,.)),
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with w is a solution of the equation (4.1).

From Theorem 1.2.1, one can see that the linear boudary operator Z, is con-
tinuous from H'(X) x H'(Q) x (L*(Q) to L*(X) x H'() x L*(Q). From the
observations given by the boundary operator Z,, we were able to stably recover

the electric potential b everywhere.

Theorem 4.4.1. Let T > 2 Diam (Q) and by, by € CH(Q) such that ||b||w1.=(g) <
M and
O0:b1(x,t) = Obo(x,t), (x,t) € X. (4.28)

Then, there ezist two constants C > 0 and puy € (0,1), such that we have
Ibr = ball-1@) < C (I1Zoy = T, | + | og || T, — Tl ™)

where C depends only on Q, M, T, and n. If we assume in addition that by, by €
H(Q), s> 2, verify |bi

Q) < M, fori=1,2, and some constant M > 0.

Then there ezist two constant C' > 0 and puy € (0,1) such that we have
L\ M2
o1 = bell (@) < € (I Zoy = Fiull + 1108 [T, — Tialll )"

Proof. We use the same tools as in the derivation of Theorem 4.2.1 and Theorem
4.3.1, that is geometric optics solutions and light -ray transform. For by, by €
CY(Q), we define b in R™™ by b = by — by in Q and b =0 on R"™ \ Q. Notice that
from (4.28) we have b € C'(R" x (0,7)).

We consider a function ¢ € Ci°(R"™) and we proceed as in the proof of Lemma

4.3.1. Then we find out that

T 1
| ] bla =t ¢*a) dasdt| < C(¥Zn = Tull + 5 ) Il ¢ € CFR).

Next, in order to derive an estimation of the light-ray transform R(b)(y,w) of b,

we fix y € R", we use the fact that b € C*(R™ x (0,7')) and proceed as in the proof
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of Lemma 4.2.2 for the above sequence (¢.).. The result of Theorem 4.4.1 follows

by repeating the arguments of the two previous sections. O
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CHAPTER 5

Stable determination of two

time-dependent coefficients

The statement of this chapter are
collected in a paper that will
appear in Mathematical Analysis

and Applications

5.1 Introduction

In this chapter, we aim to generalize and improve the previous results by study-
ing the inverse problem of determining two time-dependent unknown coeffi-
cients of order zero and one appearing in a wave equation. We consider the

following system

O2u — Au+ a(z,t)0u+b(z,t)u=0 in Q:=Q x (0,7),
u(+,0) =uo, Gu(-,0)=1u in €, (5.1)
u=f on ¥ :=1x(0,7),

where f € H'(X), up € HY(Q), u; € L*(Q) and the coefficients a € C?(Q) and

b € C}(Q) are assumed to be real valued. In light of Theorem 1.2.1, it is well
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known that if f(-,0) = wugr, there exists a unique solution u to the equation
(5.1) satisfying
u € C([0,T], H'(Q)) N C'([0, T, L*(%2)).

In the present chapter, we address the stability issues in the study of an inverse
problem for the equation (5.1), in the presence of an absorbing coefficient a and
an electric potential b that depend on both space and time variables. Inspired by
the work of Bellassoued [5] and following the same strategy as in the previous
chapter, we prove stability estimates in the recovery of the unknown coefficients
a and b via different types of measurements and over different subsets of the
domain (). In the first and the second case, we will assume that the initial
conditions (ug, u;) are fixed at zero and we will prove that in these two cases it
is possible to recover the time-dependent coefficients a and b but only in some
specific subsets of the cylindrical domain. And if we want to recover the unkown

coefficients over the whole domain, we need to further vary the initial conditions.

In order to give the main statements of this chapter, we need first to introduce
the set of the admissible coefficients a and b: Given M;, M, > 0, we consider the

set of admissible coefficients a¢ and b:
A(My, My) = {(a,b) € C*(@,) x C1(Q,); llalle2q) < My, [[bllevg) < Ma}

Here the sets Q),, Q.. and @, ; are defined in Section 2.3.1.

5.2 Determination of the coefficients from

boundary measurements

In the first case, we will assume that the initial conditions (ug,u;) are zero

and our set of data will be given by boundary measurements enclosed by the
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Dirichlet-to-Neumann map A, given by (2.2.1). Note that from Chapter 1 we
have A, is continuous from H}(X) to L*(X). We denote by ||A, | its norm in

L(H(X), L*(X)).

From Chapter 2, Section 2.2, one can see that it is hopeless to determine « and
b everywhere since the initial conditions are zero. So, we will focus on the region
arised by Ramm and Rakesh [36] and prove stability estimates for the absorbing
coefficient a and the potential b appearing in the initial boundary value problem
(5.1), by the use of the geometrical optics solutions constructed in Chapter 1
and the light-ray transform. Throughout the rest of this section, we assume that

Supp ¢ C 4, in such a way we have
Suppp N2 =0 and (Suppp+Tw)NQ =0, Ywe S

where 7, is defined in Section 2.3.1.

5.2.1 Determination of the absorbing coefficient

Our goal here is to show that the time dependent coefficient « depends stably on
the Dirichlet-to-Neumann map A, ;. Let w € S"!, and (a;, b;) € A(My, M,) such
that (a1, b1) = (ag,b) in Q, \ Q... we define a in R"* by a = ay — a; in Q, and

a=0onR"™\ @, and we set

b=0by— by, and A(z,t) = (A~ A")(z,t) = exp ( — ;/Ota(x + (t — s)w, s) ds).

Here, we recall the definition of A~ and A™

t

A™(z,t) = exp (; /Ot ar(z+(t—s)w, s) ds>, At (z,t) = exp (—;/0 as(z+(t—s)w, s) ds).

In the rest of this section, We start by collecting a preliminary estimate which

relates the difference of the absorbing coefficients to the Dirichlet-to-Neumann
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map.

Lemma 5.2.1. Let (a;,b;) € A(My,Ms), i =1, 2. There exists C > 0 such that
for any w € S and ¢ € C§°(,), the following estimate holds true

1 /T 1
L@ exp (=5 [ aly=sw)ds)~1] dy| < C (0w =Aars 45 ) Il

for any sufficiently large A > 0. Here C' depends only on 2, T', My and M.

Proof. In view of Lemma 1.3.2, and using the fact that Supp ¢ N Q = 0, there

exists a geometrical optics solution u™ to the equation

O2ut — Aut + ag(z, )0t + by(z,t)ut =0 in Q,
ut(z,0) = dwut(x,0) =0 in

in the following form

ut(z,t) = p(x + tw) A (2, 1)@+ Lot (2 1), (5.2)

corresponding to the coefficients ay and by, where i (z,t) satisfies (1.13), (1.14).

Next, let us denote by f, the function
Nz, t) =ut(z,t))x = oz + tw) At (z, 1)@ @t
We denote by u; the solution of

O2uy — Auy + ay(z,t)0uy + by (x,t)uy =0 in Q,
uy(z,0) = Oy (z,0) =0 in Q,

up = fa on ..
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Putting u = u; — u*. Then, u is a solution to the following system

O2u — Au+ ay(z, )0 + by (z, t)u = a(z, t)Ou™ + b(z, t)ut in Q,
u(,0) = Bu(, 0) = 0 no (53
u(z,t) =0 on X.

where @ = ay — a; and b = by — b;. On the other hand Lemma 1.3.3 and the
fact that (Supp ¢ + Tw) N Q = (), guarantee the existence of a geometrical optic
solution v~ to the backward problem of (5.1)

OPu” — Au~ — ay(z,t)Ou” + (by(z,t) — dray(z,t))u” =0 in Q,
“(z,T)=0=0wu (z,T) in Q,

corresponding to the coefficients a; and (—dya; + by), in the form
u”(z,t) = p(x + tw)e M A= (2 1) + 5 (1), (5.4)

where 7 (z,t) satisfies (1.21), (1.22). Multiplying the first equation of (5.3) by

u~, integrating by parts and using Green’s formula, we obtain

/OT/Q a(z,t)Out u™ dr dt + /OT/Q b(z,t)ut u” dxdt= /()T/F(Aa2’b2 — Ny py)(f2) u™ debds)

On the other hand, by replacing u* and u~ by their expressions, we have

// a(z, t)0u™ u” drdt = // a(z,t)0pp(x + tw)e™ T ) Aty - da dt
+// a(z, t)p(z + tw)eN= T, ATy da:dt—i—// a(z, t)0pp(z + tw)p(x + tw) (AT A7 )dx dt
—i—// (z,t)p(z + tw)e A=) A=9, dxdt+z)\// O* (1 + tw) (AT A7) dx dt
+// (z,0)*(x + tw)O,ATA™ dr dt + z)\// (z,t)p(z + tw)e @ ) At = dg dt
+// a(x, t)Oryry d:vdt—z)\// (z,t)¢* (z + tw) Adz dt + T,
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where A = ATA~. In light of (5.5), we have

T
. ) -
@)\/O /Qa(x,t)SD (x 4+ tw)A(x,t) de dt / / aobs — Ny o)) (fa) u™ do dt
—// (v, t)utu” drdt — Iy. (5.6)
0./

Note that for A\ sufficiently large, we have
ot u o) < Cllelpme. and L] < Cllglog. (5.7

On the other hand, since on 3, we have u™ = fy and ry = ri = 0, then, we get

the following estimate

T
(Aaz,bz - a1 bl)(f)\)u dodt| < HAa27b2 _Aahbl” ”f)\HHl HU_HL2
[Aasbo = Nar | 1 = r{ (2@ lu™ =73 @)

< C)‘3||Aa2,b2 - AahblH ||90||H3(R")' (58)

IN

Consequently, by (5.6), (5.7) and (5.8), we obtain

1
(e, 6o + ) Ala, ) dodt] < C(NlAuan = Aasaall + 5 )l

1 rt

where A(x,t) = exp (— 5/ a(z+(t—s)w,s) ds). Then, using the fact a(z,t) =0
0

outside (), and making this change of variables y = x +tw, one gets the following

estimation

T 1 gt
aly=to, 02 ) exp (=5 [ aly=sw, ) ds) dy dt| < (VA wss=ar |45 ) Ielican
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Bearing in mind that

//n —tw,t) ¢*(y) exp ( a(y — 5w, s) ds) dy dt

:—2//n 2(y) [exp( ; ta(y—sw,s)ds)}dydt

= -2 902(y){ p( ; a(y—8w78)d8)—1}dy,

Rn

t

l\:)\»—

we conclude the desired estimate given by

1 /T
L7 [exp (=5 [ atu—sw,9)ds) 1] dy| < (VAR 43 ) I B

This completes the proof of the lemma. U

Our next goal is to obtain an estimate that links the light-ray transform of
the absorbing coefficient « = ay — a; to the measurement A,,;, — A, 5, OD a
precise set. Using the above lemma, we can control the light-ray transform of a

as follows:

Lemma 5.2.2. Let (a;,b;) € A(My,Ms), i = 1,2. There exist C > 0, § > 0,

B >0 and \g > 0 such that for all w € S*1, we have
1
R(@)()] < OV = Al + 55 ) a-ey €,

for any X > X\g. Here C depends only on 2, T, My and Ms.

Proof. Let ¢ € C§°(R™) be a positive function which is supported in the unit ball
B(0,1) and such that [[9)||;2@n) = 1. Define

T —
on() = hn/qu(}zy)’ (5.9)
where y € o7.. Then, for h > 0 sufficiently small we can verify that

Supppr, NQ =0, and Suppp, £TwNQ=10.
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Moreover, we have

exp[—;/oTa(y—sw,s)ds] —1‘:’/11g o2 (z )[ Xp(—; OTa(y—sw,s)ds)—l} dx’

/Rn@i(f’;) eXP(‘é/OTa(Z/—SW,S)dS> —eXp(—;/OTa(:c—sw,s)ds)
+‘/Rn<pi(x)[exp<—;/[)Ta(:r—sw,s)ds> —l]dx.

dx

(5.10)

Therefore, since we have

1 /T 1 /T
exp <_ 5/ a(y — sw s)ds) exp < — 5/0 a(x — sw, s)ds)
< C‘/ — sw, s)—a(r — sw, s)ds|,

and using the fact that < C'|y — x|, we deduce

/0T<a(y — sw, s)—a(r — sw, S))ds

upon applying Lemma 5.2.1 with ¢ = ¢, the following estimation

exp (=5 [ aly=se5)ds) =1 <€ [ 2@ ly=al datC Rz =B+ ) I B
On the other hand, we have

lenllmsen < Ch* and [ @R(@)ly —alde < Ch.
So that we end up getting the following inequality

1 /T
exp<—2/O a(y—sw,s)ds)—l‘§Ch—|—0<)\2||/\a27b2— Aoy o Il + )h6

Selecting h small such that h = 1/ARS, that is h = A™'/7, we find two constants
0 >0 and g > 0 such that

1 /T 1
exp ( — 5/0 a(y — sw, s) ds) — 1‘ < C[)\‘SHA%I,2 — Aoy || + v
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Now, using the fact that |X| < eM |eX — 1| for any | X| < M, we deduce that

1 T
exp<—2/0 a(y—sw,s)ds) —1‘.

M T

1 /T
’ aly — sw,s)ds| < e

2o

Hence, we conclude that for all y € . and w € S"! we have

‘/ Yy — sw,s)ds

Since a = as — a; = 0 outside @Q,.., this entails that for all y € o7, and w € S,

1
< O()‘éuAtm b2 T Aa17b1|| + )\5>

we have

1
‘/ Y — tw, 1) dt’ < C</\5]|Aa2 R +Aﬁ). (5.11)

Moreover, if y € B(0,7/2), we have |y — tw| > |t| — |y| > |t| — g Hence, one can
see that (y —tw,t) ¢ €7 if t > r/2. On the other hand, we have (y — tw,t) ¢ €'
if t < g Thus, we conclude that (y — tw,t) ¢ € D Q,. for t € R. This and
the fact that @ = as — a; = 0 outside @, ., entails that for all y € B(0,7/2) and
w € S" !, we have

a(ly —tw,t) =0, Vt € R.

By a similar way, we prove for |y| > T — r/2, that (y — tw,t) ¢ €. D Q.. for
t € R and then a(y — tw, t) = 0. Hence, we conclude that

/ aly —tw,t)dt =0, ae. yé¢ .o, weS" (5.12)
R
Thus, by (5.11) and (5.12) we finish the proof of the lemma by getting
1
IR (a)(y,w)| = '/Ra(t,y — tw) dt‘ < C ()\‘5||Aa2,b2—/\a17b1||+>\ﬁ>, ae. y €ER", wesS"

The proof of Lemma 5.2.2 is complete. U

Our goal now is to obtain an estimate linking the Fourier transform with re-

spect to (x,t) of the absorbing coefficient « = ay; — a; to the measurement
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Aoy by — Moy b, In the conic set E given by (2.16). Namely, we aim for proving

that the Fourier transform of a is bounded as follows:
Lemma 5.2.3. Let (a;,b;) € A(My, M), i = 1,2. There exist C > 0, § > 0,
B >0 and Ao > 0, such that the following estimate

N 1
(6 < C (WM = Al + 55 ).

holds for any (§,7) € E and X\ > X.

Proof. Let (¢£,7) € E and ¢ € S*! be such that £-( = 0. Setting

T 72

Then, one can see that w € S ! and w-¢ = 7. On the other from Lemma 1.4.1,

one can see that

/n R(a)(y,w)e ¥ S dy =a(&,w-€) =a(g, 1),

where we have set (£,7) = ({,w-§) € FE. Bearing in mind that for any ¢ € R,
Suppa(-,t) C Q C B(0,7/2), we deduce that

R W dy = a(é, 7).
Lo omy RO ) e Sy =a(e.m

Then, in view of Lemma 5.2.2, we finish the proof of this lemma. U

Let us state the main statement of this section.

Theorem 5.2.1. Let T >2 Diam(Q2). There exist C > 0 and m, u; € (0,1) such

that if ||Aayp, — Nagp |l < m, we have

||CL2 - alHL"o(Qr,*) < C’ 10g HACthl - Aa27b2|l|7mv
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for any (a;, b;) € A(My, My) such that ||a;|| ey < My, for some p > n/2+3/2,
(a1,b1) = (ag, by) in Q, \ Qr« and (yay, dpby) = (Opaz, 0:by) on 0Q, NOQ, .. Here
C depends only on 2, My, My, T and n.

We move now to prove our result by the use of the result we have already
obtained and the analytic argument given by Theorem 3.2.1, which is inspired

by [1] and adapted for our case.

Proof. For a fixed a > 0, we set F,(7,&) = a(a(, 7)), for all (§,7) € R™™L Tt is
easy to see that F, is analytic and we have for x € (NU {0})"*!

0% Fo(€,7)] = |9%a(a(e,m))| = |oF / a1y e oD €7 g gy
R 1
= | alm (=) (@, et € da:dt‘.
Rn 1

This entails that

|k ’KZ"

|0"F, (&, 1) < / |a($,t)|a|”|(|x|2 +t2)7| dr dt < |lal[L1(o,.) altl (2T2)‘2il <C
® :

n+1

The, upon applying Theorem 3.2.1 with M = Ce®, 2p =T~ and O = EoﬂB(O, 1),
where

E={E71)eRx R\ {0}), |7]<I€]},

one may find a constant 1 € (0, 1) such that we have for all (£, 7) € B(0, 1), the

following estimation
Fal€7)] = [a(a(€. )] < O™V Full}w o

Now the idea is to find an estimate for the Fourier transform of a in a suitable
ball. Using the fact that « E = {a(€,7), (£,7) € E} = E, we obtain for all
(& 7) € B(0,a)

(e, m)l = |Fala™ (€, 7)) < Ce®™ 7 || Fullf o)
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IN

Ce*|all}
Ce*al]

Lo (B(0,0)NE)

IN

Yy (5.13)

The next step in the proof is to deduce an estimate that links the unknown coeffi-
cient a to the measurement A,, 5, — A4, 5,- To obtain such estimate, we need first

to decompose the H~1(R""!) norm of a into the following way

/v

lallis = [ (O AE AP dedr [ (1 | OF) 7 ate. )P dear )

£)l<a
< (0™ fallie s + o ||a||L2(Rn+1>)

Hence, in light of (5.13) and Lemma 5.2.3, we get

1 1/
Ha“?{/’jl(R"+l) < C(an+1 620[(1_7) ()\6||Aa2,b2 - Aa1,bl ” + —)27 + a—Q

n+l  2a(l-7) n+1 20(1—y) _
< C(a D N [V W U | e e T N e 2”).

Let ag > 0 be sufficiently large and assume that o > «. Setting

nt3  a(l—p)
A= 207 ¢ ,

ntl  2a(l— )
and using the fact that o > ag, one can see that A > \g and a7 e~ T2 =

a~2/7. This entails that

IN

“ H ( B(n+1)+68(n+3) 2a<5+6)(1 7)
a 1(RnH1) o

o e HAa2 by ™ Aal,bl H2 + 05_2/7>
S C <6Na||Aa2,b2 - Aa1,b1 ||2 + a—2/7>’

where N depends on 9, 3, n, and . The next step is to minimize the right hand-
side of the above inequality with respect to a. We need to take « sufficiently large.

So, there exists a constant m > 0 such that if 0 < ||Agy s, — Aay s, || < m, and

1
= N‘ log “Aambz - AahblH |>
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then, we have the following estimation

v/2
HaHH*l(Qr,*) < ||a||H*1(R"H) < C(”A‘lQ»bQ - Aa1,b1|| + | 1Og ||Aa27b2 - Aa17b1|| |_2/’Y>
= C(HAambz - Aal,b1 H'Y/2 + | log HAame - Aal,ln |’|(5>l4)

Let us now consider # > 1 such that p := s—1 = "7“4-29. Use Sobolev’s embedding

theorem we find by interpolating

IN

Cllall 3+
1—
< Cllall,

< Cllalztig,.:

||a||L°°(Qr,*) (Qrx)

Q) |al ZS*l(QT,*)

for some 1€ (0, 1). This completes the proof of Theorem 5.2.1. O

This will be a key ingredient in proving the result of the next section.

5.2.2 Determination of the electric potential

By means of the geometrical optics solutions constructed in Chapter 1, we will
show using the stability estimate we have already obtained for the absorbing
coefficient a, that the time dependent potential b depends stably on the Dirichlet-
to-Neumann map A, . As before, given w € S*1, (a;,b;) € A(My, M) such that
(a1,b1) = (ag, by) in Q, \ Q,., we set

t
a=ay—a;, b=>by—b and A(x,t)= (A A")(x,t) =exp (—;/ a(x+(t—s)w, s) ds),
0

where A~ and A* are given by

t

A (z,t) = exp (; /Ot ar(z+(t—s)w, s) ds), At (z,t) = exp <—;/0 as(z+(t—s)w, s) ds).

In the rest of this section, we define b in R*** by b = b, — b, in @, and b = 0 on

R™T1\ Q,. We start by giving a preliminary estimate that will be used to prove
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the main statement of this section.

Lemma 5.2.4. Let (a;,b;) € A(My,Ms), i =1, 2. There exists C > 0 such that
for any w € S and p € C§°(+,), the following estimate holds

1
~ 1,2 (9) dy dt] < C (N hantn = Aasin |+ Mz, + 5 ) I lincany

for any A > 0 sufficiently large. Here C' depends only on 2, My, My and T.

Proof. We start with the identity (5.5), except this time we will isolate the electric
potential

T T T
// bz, t)utu” d:vdt://(Aaz,bQ—Aal,bl)(fA)u_ dadt—// a(z,t)0utu” dzdt.
0Ja 0Jr 0Ja

By replacing vt and u~ by their expressions we get

T T
2 — _
AL;&LO¢(I+¢prL®dxﬁ—:// it — Nar o ) (Fr)u~ dodt
—// b(z,t)p(x + tw) A~ (z,t)e” N Tt (g 1) d:vdt—// z, )ri(z, t)ry (z,t) do dt
0,0
_ N _ + IN(T * wt)
/O/Qa(ﬁ,t)&gu u” dxdt /O/Q (x,t)p(r +tw)A™ (z,t)e ry (z,t) dx dt

T /
:AAMWM—MMMﬁWWwﬁ+A. (5.15)

Then, in view of (5.15), we have

// (2, 1) (z + tw)dxdt :// (2, 1) (z + tw)(1— A)dzdt
+/ / azbs — Nay o) (S3)u” dadt—l—[

From (1.14), (1.22) and using the fact that @ = as — a; = 0 outside @, ., we find

1
1] < C(Mlallze@nn + 5 )@l @n)- (5.16)
A
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By the trace theorem, we get

T
(Aa27b2 - a1 b1)<f>\>u dodt] < ||Aa27b2 - Aa17b1||||f>\||H1(E)||u_||L2(E)
< O)‘SHAaz,bz - Aal,b1|| HSOH%T?’(R") (517)

On the other hand, we have

T
b, )% (x + tw)(1-A) de di] < Cllalli=ig,) lellp@s.  (5.18)

Then, in light of (5.16)-(5.18), taking to account that b = by — by = 0 outside @), .

and using the change of variables y = = + tw we get

1
bly—tuo, 1) dy dt| < C (N Aazi—Aar [+ A0l 5 ) I By

This completes the proof of the Lemma. U

Now the idea is to deduce an estimate for the light ray transform of the time-
dependent unknown coefficient b in order to control thereafter its Fourier trans-

form.

Lemma 5.2.5. Let (a;,b;) € A(My, M), i = 1,2. There exists C > 0, 6 > 0,
B >0 and Ny > 0 such that for all w € S*™1, the following estimate holds

1
’R(b)(y,w)‘ < C(A(SHA@JJQ - Aa1,b1H + )‘6HaHL°°(Qr,*) + )\5)7 a.ey € Rn?

for any X\ > \g. Here C' depends only on Q, T, My and M.

Proof. We proceed as in the proof of Lemma 5.2.2. We consider the sequence (¢p,)p
defined by (5.9) with y € .. Since we have

T
’/ by — tw,t) d
0

— tw,t) o} (x )dxdt‘

n

b(x — tw, t)r(z dwdt‘

( y —tw.t) —b(z twi))goi(x)dxdt‘.
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Then, by applying Lemma 5.2.4 with ¢ = ¢, and since |b(y —tw, t) —b(z —tw, t)| <

Cly — x|, we obtain
1
[ 0ty = 10, 00t] < (N wst, — Bl + Mol + 5 ) lon ey + . J = vl @)

On the other hand, since ||¢p | gs@rn) < Ch™* and / |z — ylo}(z)de < Ch, we
]Rn
conclude that

1
)h-6+0h.

T
[ oy~ )] < € (X 8asge = Aayll + el +

Selecting A small such that h = h~%/X. Then, we find two constants § > 0 and
£ > 0 such that

. 1
/0 b(y - tw,t)‘ < C(AJHAaz,bQ - Aal,b1H + )\6”al|Loo(QT’*) + /\'8)

Using the fact that b = by — by = 0 outside @), ., we then conclude that for all
y € o, and w € S",

1
/]Rb(y - tw7t) dt’ < C<>‘6||Aa2,b2 - a1 b1|| + >‘ HaHLC’O(Qr*) + )\5)

Next, by arguing as in the derivation of Lemma 5.2.2, we end up upper bounding

the light-ray transform of b, for all y € R™. O

By proceeding by a similar way as in the previous section, we can control the

Fourier transform of b as follows

Lemma 5.2.6. Let (a;,b;) € A(My, M), i = 1,2. There exists C > 0, 6 > 0,
B >0 and Ao > 0, such that the following estimate

1

b6, 7)< C(WAanin = Aainll + Nllalmi0, + 55 ) @ (67) € E,

for any A > \g. Here C' depends only on 2, T', My and M.
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Theorem 5.2.2. Let T'>2 Diam(Y). There exist C > 0 and m, pu € (0,1) such

that if || Aoy by — Nag o || < M, we have

-1
b2 = bl 2@, < € (108 108 1Az — Aayin ")

for any (a;,b;) € A(My, My) such that ||a;||grqy < My, for some p > n/2+ 3/2,
(a1,b1) = (ag,ba) in Q, \ Qr« and (Opay, duby) = (Opag, 0,by) on 0Q, NOQ, .. Here
C' depends only on 2, My, My, T and n.

This mentioned result is the main statement of this section and it shows that
the time-dependent potential b can also be stably determined, from the knowl-
edge of the boundary measurements A, in the same subset @), . C (), provided

it is known outside this region.

Proof. Using Lemma 5.2.6 as well as the analytic continuation argument Theorem
3.2.1, we upper bound the Fourier transform of b in a suitable ball B(0,«) as
follows

- 1 1\
b, < Ce0 (NN Auspn = Aasil+ Mllalio +35) + (5:19)

for some v € (0,1) and where o > 0 is assumed to be sufficiently large. Then, in
order to deduce an estimate linking the unknown coefficient b to the measurement

Aoy, — Nay iy, we control the H'(R™) norm of b as follows

=

5

2 ~
1011771 (gnt1y < Cla™ D2 50,0y + @ 210172 (gns)

So, by the use of (5.19), we obtain the following inequality

20(1—7)
Y

2 n _
”b“;lfl(R'rH»l) < C[Oé;rle ()\2662 + )‘26HCLH%°°(QT,*) + )\72&) + OJ’Y2:|7 (520)
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where we have set € = ||Ag, 4,

Agy b |- In light of Theorem 5.2.1, one gets
2 n+1 2a(l1—7) 2
6171y < C| .

a e
for some v, puy € (0,1) and 9, 5 > 0. Let ap > 0 be sufficiently large and we take
a > agp. Setting

~

(A26€2+)\26|10g E|—2p,1 +)\—2ﬂ) +Oé_

n+3 a(l—7)
A=q2Be B

By o > ay, we can assume that A > A\g. Therefore, the estimate (5.20) yields

_2
D

2

‘|b|’E71(Rn+1) < C{SNO‘ <52 + “Oge’—Zm) +a
for some s, pu; € (0,1), and where N is depending on n, 7,6 and 3. Thus, since €
is small, we have

7 _2
1617+ goery < C (N logel 2 +a7)

(5.21)
In order to minimize the right hand side of the above inequality with respect to

a, we need to take « sufficiently large. So, we select a as follows

1
Nlog|loge|“1.

o =

Then, the estimate (5.21) yields

-1
b330y < Iblli-sensy < € (10 108 [Aass = a1

This completes the proof of Theorem 5.2.2.
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5.3 Determination of the coefficients from

boundary and final data

In order to extend the above results to a larger region (), ; O )., we require more
information about the solution u of the wave equation 5.1 with (ug, u;) = (0, 0).
So, in this case we will add the final data of the solution u. This leads to defining

the following boundary operator (response operator):

Definition 5.3.1. We define the boundary operator %y as follows

Ry H(X) — K:=L*2) x HY(Q) x L*(Q)
f — (Opu,u(-,T),0u(-,T)),

with w is a solution to the equation (5.1) with (ug,u1) = (0,0).

We conclude from Theorem 1.2.1, that %, ; is a continuous operator form
H'(X) to K. We denote by ||Z,,|| its norm in L(H'(X),K). In this case, we
shall consider the geometric optics solutions constructed in Chapter 1, associated
with a function ¢ obeying supp ¢ N Q = (. Note that this time, we have more
flexibility on the support of the function ¢ and we don’t need to assume that

supp ¢ +TwN ) = () anymore. Throughout the rest of this section, we denote by

’%;,bof) = Jyu, ’%g,b(f) = u( ) 7T)7 ’%g,b(f) = atu( ’ 7T)

5.3.1 Determination of the absorbing coefficient

In this section, we will prove that the absorbing coefficient a can be stably recov-
ered in a larger region if we further know the final data of the solution u of the
dissipative wave equation (5.1) with (ug,u;) = (0,0). In the rest of this section,
we define a = ay —a; in @, and a = 0 on R*™! \ Q,. We shall first prove the

following statement
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Theorem 5.3.1. Let T'>2 Diam(Q2). There exist C > 0 and m, uy € (0,1) such

that if || Aoy by — Nag || < m, we have
H(Ig - alHLOO(Qm) < | 1Og H'%ahbl - %CLbeQH |_M1’

for any (a;,b;) € A(My, My) such that ||a;||grqy < My, for some p > n/2+3/2,
(a1,b1) = (az,ba) in Q,\ Qry and (dya1,0:b1) = (Dyag, Oyby) on 0Q, NOQ, 4. Here
C' depends only on 2, My, My, T and n.

Proof. In view of Lemma 1.3.2 and using the fact that supp o NQ = 0, there exists

a geometrical optic solution u™ to the wave equation

(8? — A+ as(x,t)0; + by(x, t))u+ =0 in Q,
ut(z,0) = dut(z,0) =0 in

in the following form
ut(z,t) = p(x + tw) AT (2, 1)@+ Lt (2 1), (5.22)

corresponding to the coefficients a, and by, where ry (z, ) satisfies (1.13) and (1.14).
We denote
falw,t) = ut (2, 8)) = o + tw) AT (z, )"+,

Let u; be the solution of

Ouy — Auy + ay(z,t)Ouy + by (x,t)uy =0 in Q,
ui(x,0) = Oy (x,0) =0 in €,

up = fa on ..
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Putting u = u; — u*. Then, u is a solution to the following system

O2u — Au+ ay(z, )0 + by (z, t)u = a(z, t)ou™ + b(z, t)ut in Q,
u(,0) = dyu(r,0) = 0 im0 (5.23)
u(x,t) =0 on 3,

where a = as — ay and b = by — b;. On the other hand, Lemma 1.3.3 guarantees

the existence of a geometrical optic solution u~ to the adjoint problem
O*u~ — Au™ — ay(z,t)0u™ + (by(x,t) — iar(z,t))u” =0 in Q,
corresponding to the coefficients a; and (—dya; + b1), in the form
u”(z,t) = p(x + tw)e M A= (2 ) + 1y (2, 1), (5.24)

where ry (z,t) satisfies (1.21) and (1.22). Multiplying the first equation of (5.23)

by u~, integrating by parts and using Green’s formula, we get

/f a(z, )0t u~dedt = /(%32 by — Ly, bl)(f)\)
b [ [ s~ Fh ) G )~ [(5, 4, — F (P (2 T) da
_/O/Q (z, t)u™t (x, t)u” (z,t) dz dt. (5.25)

aj(x, T)u (z,T) — O (z,T)| dz

By replacing «™ and u~ by their expressions, using (5.7) and the Cauchy-Schwartz

inequality, we obtain

1

C _ _ B 2
awxw%x+mwmuwmw4g[@uu;z+wm<me;Q+4@u<»TM$mQ
(1682, 1, = ) )yt (2, = 82,0 ) ) s

1

B, 1, — 5, ) ) ey ) HI s |-
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Then, by setting ¢, = (u‘_z, u (-, T), Qu (- ,T)), one can see that

T C
[ ate 6 tw) A, ) d dt] < 5 (18anin=Fosaa i) 3+ T oo )

Therefore, by the trace theorem we get

T 1
[ atet)6* @ + 1) A, 8 do dt] < C(N | Bass — Furall + 5 ) sy

Finally, we use the fact that a = a2 — a; = 0 outside ), 4 and we get by arguing

as in the proof of Lemma 5.2.1 the following estimate

1 /T 1
L@ exp (=5 [ aly=sw,)ds)~1] dy| < € (X1 0ni= s+ ) Il

Next, by considering the sequence ¢ defined by (5.9) with y ¢ €2, taking to
account that a = ay — a; = 0 outside @), 4 and arguing as in the proof of Theorem

5.2.1, we complete the proof of Theorem 5.3.1. 0

5.3.2 Determination of the electric potential

We aim to show by the use of Theorem 5.3.1, that the potential b can be stably
recovered in the region (), ;, with respect to the operator %, . In the rest of this
section, we define b in R"*' by b = b, — b; in @, and b = 0 on R"** \ Q,. The

main result of this section can be stated as follows

Theorem 5.3.2. Let T'>2 Diam(QY). There exist C > 0 and m, p € (0,1) such

that if || Aay b, — Nagpo |l < m, we have

-1
”b2 - blHH*l(Qr,ﬁ) < O<1Og | log ”'%@,bz - ‘%ahbl H |M> s

for any (a;, b;) € A(My, My) such that ||a;||arq) < My, for some p > n/2+3/2,
(a1,b1) = (ag, by) in Q, \ Qs and (Opay, Dpb1) = (Opaz, 0:by) on 0Q, NOQ,y. Here
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C' depends only on 2, My, My, T and n.

Proof. We start with the identity (5.25), except this time we isolate the potential

b, we get

[ vty dude = [ [ (L, ~ B ) o ot~ [[(F, — B, () . T)
/ - %31b1><f> (@, T)u™ (2, T) = G (2,T) | da

_ /0 /Q a(z, )owut (z,)u (z,t) dz dt.

So, by replacing u™ and u~ by their expressions, taking to account (5.16), (5.18)
and the fact that a = as —a; = 0 outside @),.4, and making the change of variables

Yy = z + tw, we obtain

n

1
bly—te, 02 (y) dy dt] < C (N1 Banin=Fosin [+ Mlall e+ ) 1 sy

Then, in order to complete the proof of Theorem 5.3.2; it will be enough to consider
the sequence (¢y,) defined by (5.9), with, y ¢ ), use the fact b = by —b; = 0 outside

Q-4 and proceed as in the proof of Theorem 5.2.2.

5.4 Determination of the coefficients from
boundary and final data by varying the initial

conditions

In the first and the second case, we can see that there is no hope to recover
the unknown coefficients a and b over the whole domain, since the initial data
(ug,uy) are zero. However, we shall prove that this is no longer the case by
considering all possible initial data. For (a;,b;) € C*(Q) x C1(Q), i = 1, 2, we
define (a,b) = (az — a1,bs — by) in Q and (a,b) = (0,0) on R**1\ Q.
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By proceeding as in the derivation of Theorem 5.2.1 and Theorem 5.3.1, we
prove a log-type stability estimate in the determination of the absorbing coeffi-
cient a over the whole domain @, from the knowledge of the measurement 7,

defined as follows

Definition 5.4.1. We define the boudary operator L, as follows

Ia,bi F — K
(fyuo,u1) — (Qyu,u(-,T),0m(-,T)),

where F = H'(X) x H'(Q) x L*(Q) and K = L*(X) x H'(Q) x L*(Q). From
Theorem 1.2.1, we deduce that 7, is continuous from F into K, we denote by
|1 Z4 | its norm in L(F, K).

The main statements of this section are:

Theorem 5.4.1. There exist C > 0 and m, 3 € (0,1) such that if ||Agyp, —

Aoy o || < m, the following estimate holds
las = ar[| @) < Cl10g | Zaypr = Zaz i |7,

for any (a;,b;) € C*(Q) x CH(Q), such that ||a;||lc2(q) + ||laillmr@) < My for some
p > n/2+3/2, ||biller) < My and (0pa1,0:b1) = (0za2,0:b2) on X. Here C
depends only on Q,My,Ms, T and n.

To prove such estimate, it will be enough to proceed as in the proof of Theorem
5.2.1 and 5.3.1, except this time, we have more flexibility on the support of the
function ¢, defined by (5.9). Namely, we don’t need to impose any condition on
its support anymore (we fix y € R™).

The same thing for the determination of the time-dependent potential b. we
argue as in the proof of Theorem 5.2.2 and 5.3.2, to prove a log-log-type stabil-
ity estimate in recovering the time dependent coefficient b with respect to the

operator Z,;, over the whole domain Q).
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Theorem 5.4.2. There exist C > 0 and m, pp € (0,1) such that if ||Aayp, —

Aoy o || < my, the following estimate holds
-1
b2 = illis() < €108 108 [ Tasin = Zuusi 1)

for any (as,b;) € CX@Q) x C1@), such that |laillex) + lailliigy < My for some
p > n/2+3/2, ||biller) < My and (0pa1,0:b1) = (0za2,0,b2) on X. Here C
depends only on Q,My,Ms, T and n.
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Part Il

Inverse problem for magnetic

Schrodinger equations
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CHAPTER 6

Determination of coefficients in

magnetic Schrodinger equations

6.1 Introduction and main results

My PhD work was not only focused on hyperbolic equations, as I also adressed
the same type of analysis for magnetic Schrodinger systems. This section is de-
voted to introduce the inverse problems we deal with in the second part of the
thesis and give the main obtained results.

The first work in this part turns around studying an inverse problem concern-
ing the following magnetic Schrodinger equation posed on a bounded cylindrical

domain @ = Q x (0,7) of lateral boundary ¥ = 02 x (0,7)

(10 + Aqa 4+ q(z,t))u=0 in Q,
u(.,0) = ug in Q,
u=f on X,

where (2 is a subdomain of R™, n > 3 which is assumed to be bounded and simply
connected, uq is the initial condition and f is the Dirichlet data used to probe the

system. Here A, is the Laplace operator associated to the real valued magnetic
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potential A which is defined as follows

Aa = (0;+ia;)> = A+ 2iA-V +idiv(A) — |A]%. (6.1)
j=1
The inverse problem is to determine the real valued time-dependent electric
potential ¢ and the magnetic field da4 induced by the magnetic potential A and
given by the following formula
" (0a; Oa;
dos = P J)d‘/\di. 6.2
@A Z (8% 81’Z xj o ( )

1,j=1

More precisely, our objective is to treat the stability issue in determining the
time-dependent coefficient ¢ and the magnetic field da s from the knowledge of

the Dirichlet-to-Neumann map which is defined as follows

Aay: H2(Q) x H2L(E) —s  HY(Q) x LX(%)
(uo, 1) — (u(.,T),(8V+iA-V)u),

were v(x) denotes the unit outward normal to I at =, and 0,u stands for Vu - v.

Here H*!(Y) is a Sobolev space we shall define in the next chapter.

From a physical view point, the inverse problem consists in determining the
magnetic field da 4 induced by the magnetic potential A, and the electric poten-
tial ¢ of an inhomogeneous medium by probing it with disturbances generated
on the boundary. Here we assume that the medium is quiet initially and f de-
notes the disturbance used to probe the medium. Our data are the response
(0, + iA.v)u performed on the whole boundary ¥, and the measurement u(.,T),

for different choices of f and for all possible initial data .

So, by means of techniques used in [5]; [15] we prove a "log-type" stability
estimate in the recovery of the magnetic field and a "log-log-log-type" stability

inequality in the determination of the time-dependent electric potential which
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belong to the following sets: for ¢ > 0, M > 0, we set
Ag = {A S C3<Q), ||A||W3OC(Q) <g, Al = AQ inF}, (63)

Qu ={q € X =W>>0,T;W">(Q)), llgllx <M, ¢ =g¢ inl'}. (6.4)

The main results can be stated as follows:
Result 1: Let o > § + 1. Let ¢; € Qu, A; € A, such that || A;||ge) < M, for
i = 1, 2. Then, there exist three constants C' > 0 and u,s € (0,1), such that we

have

S

HdaAl - daAz HLW(Q) <C (HAA27612 - AAM]l ”1/2 + ‘ log HAAz,tH - AAl,th H‘iu)

Here C depends only on 2, ¢, M and T.

As a consequence, we can retrieve a stability estimate for the electric potential

by assuming that the magnetic potential A is divergence free:

Result 2: Let q; € Qu, A; € A, for i = 1, 2. Assume that div A; = 0. Then

there exist three constants C' > 0, and m, u € (0, 1), such that we have

a1 — @llz1@) < CPm(n),
where
| log |log [logn|*| [~ if n < m,

— if [|A —A > m.
m77 f H A2,q2 AMIlH Zm

Here nn = ||Aa,.qo — A4y g |, and C depends on €2, M, e and T'.

The proofs of the mentionned results are the purpose of Chapter 7. The deriva-

tion of such results is essentially based on building a sufficiently large set of
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geometric optics solutions for the system under investigation.

There is another approach for solving inverse coefficients problems, based on
the celebrated Bukhgeim. Klibanov method, which is by means of a Carleman
estimate. In this case, only a finite number of boundary measurements are re-

quiered:

In Chapter 8, we study the inverse problem of determining simultaneously two
coefficients appearing in a magnetic Schrodinger equation posed in a bounded
domain = Q x (0,7) with smooth boundary ¥ = I' x (0,7"), where Q2 is a
subdomain of R™ with n > 1. More precisely, our goal here is to stably determine

the coefficients a and ¢ arising in this equation

(~ 10, + (¥ + x(a(x))? + AD)gx))u(r.)) =0 in Q.
u(z, ) = uo(x) in Q,

u(z,t) =0, on X,

from the knowledge of a finite number of lateral observations taken on an open
subset of the boundary I'" x (0,7) C X that satisfies an appropriate geomet-
rical condition we shall precise later. Here the functions 3,y € C3(0,T;R) are
assumed to be known functions satisfying

T

) =B

T
X( 9

) =0, X(5) #0, F(5) £0.

By means of a Carleman estimate, it was possible to establish a stability es-
timate of Lipschitz type for the determination of n + 1 unknown functions by
exactly n + 1 observations. Let us denote by V, an arbitrary neighborhood of the
boundary I, and by A := H'(Q)"N{a € L>*(Q,R"), V-a=0}.For M > 0, and
(ap, qo) € A x L>(Q2), we define the admissible set of the unknown coefficients a

and ¢:

Su(ao, @) == {(a,q) € A x L*>(Q),such that a = a9, and ¢ = ¢ in V}. (6.5)

117



The main result of Chapter 8 can be stated as follows:
Result 3: Let M > 0 and (a;,q;), j = 1,2 be in Sy(ao, qo), where (ao, o) are the
same as above. Then, there exists n+ 1 initial conditions ugy, k = 0, ..., n, such that

we have
lar = aallzzey + s = dallzy < C( 3 19,081 = OuGFuaslEaorsneoy )
k=0

Here C' > 0 is a constant depending only on 2, T, x and § and w;, j = 1, 2, is the

solution of the magnetic Schrodinger equation where uy , is substituted for w.

In chapter 8, we will developp the proof of this result.

6.2 The basic tools

This section is devoted to give the main tools needed to prove the above men-

tionned results.

6.2.1 Geometric optics solutions

The first and the second result mentionned above ensue mainly from the con-
struction of special geometric optics solutions for the system under investigation.
For this purpose, we consider a vector w = wy + i wg, such that wy, wg € S*!

and wg . wg = 0. For o0 > 1, we define the complex variable p as follows
p=o0ow+y,

where y € B(0, 1) is fixed and independent of . We shall see that the differential

operator N,, = w -V is invertible and we have

O B RN (52 U S A SRR
Nwl(g)(x) - (27’(’)” /ne (M) d£ - o /R2 n +Zy29(x YWy y2w%) dyl dy2
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Notice that the differential operator d corresponds to N,, with w = (0, 1).

Inspired by techniques used in elliptic problems, and by assuming that the
magnetic potential A is of small norm, it was possible to construct solutions to

the magnetic Schrodinger equation
(10, + Aa + q(z,t))u(z,t) =0, in Q,
for o sufficiently large, of the form
u(z,t) = (0 o) (€@ + w(x, 1)),

in such away that

w-Vo(r) = —w-Alx), xeR"

Here ¢ = N '(—w.A), and the finction w denotes the error term that satisfies the

following estimation

ollw|l g2 0)) + 1wl L20,75m2(0) < C-

We give more details about the construction of geometric optics solutions in

Chapter 8.

6.2.2 A Carleman estimate

In this section, we recall the global Carleman inequality for vanishing solution
on the boundary 3, which can be found in [3][Section3]( see also [18] ). This

estimate is the main tool needed for the derivation of Result 3.

Given the Schrodinger operator

L:=id + A, (6.6)
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we define a function v € C*(Q, R, ), satisfying the following conditions:
@) [Vy(z)| >8>0, Vo eq.
(ii)) Vy-v<Oforallz e T\ T'".

(i) JA; > 0, Je > 0 such that for all £ € C", and for all A\ > A, we have

AV -7 + D*(€,€) > el¢f?,
20

00 ) 1<i,j<n

where D) = ( and D?*y(&,€) denotes the C"-scalar product

of D%)¢ with €.

Notice that there are actual functions v verifying the above assumptions, such
as ¥ — |z — xo|?, for an arbitrary x; € R" \ Q and a subboundary I'* > {z €
I', (x — x) - v > 0}. Furthermore, for A > 0 the following weight functions:

e o — @)

O(x,t) = and 7n(z,t) = T

(6.7)

where a > [|e*||;~(q). Finaly, we introduce the two operators P, and P acting

in C5°(Q)’, as follows:
P =0, + A+ s*|Vn|?, and P, :=isdn+2sVn-V + s(An), (6.8)

in such a way that P, + P, = e *"Le"".

Proposition 6.2.1. (see [3]) Assume that 1p and T'" satisfy the above conditions.
Let np and 0 be as in (6.7), and let P;, j = 1, 2 be defined by (6.8). Then, there
are two constants so > 0 and C > 0, depending only on T, Q and I't, such that
the estimate

slle™"Vull7zg) + s*lle™ ullF2g) + Do 1Pe 2y
j=1,2

< C<s||6‘5’701/2(@@D)l/Q@UIIiZ(zﬂ + IIG_S"L“H%?(Q))’
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holds for all s > sg, and for any function u € L*(0,T; H}(Q2)) such that Lu €
L3(Q) and O,u € L*(0,T; L*(I'")). Here X7 stands for T x (0,T).
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CHAPTER 7

Determination of coefficients in a
magnetic Schrodinger equation

from Dirichlet-to-Neumann map

The contents of this chapter are
collected in a paper submitted at

JMP.

7.1 Introduction

In this chapter, we deal with the inverse problem of determining the magnetic
field and the time-dependent electric potential in the magnetic Schrodinger equa-
tion from the knowledge of boundary observations. Let @ € R", n > 3, be a
bounded and simply connected domain with C* boundary I'. Given 7" > 0, we

denote by Q@ = Q x (0,7) and ¥ = T" x (0,7"). We consider the following initial
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boundary problem for the Schrodinger equation

(10 + Ax+q(z,t)u=0 in Q,
u(.,0) = ug in Q, (7.1)
u=f ony,

where A 4 is given by (6.1), the real valued bounded function ¢ € W2°°(0, T; W1°°())
is the electric potential and A € C3() is the magnetic potential. We define
the Dirichlet-to-Neumann map associated to the magnetic Schrédinger equation

(7.1) as follows

Aay: H2(Q) x H2L(S) —s  HYQ) x LX(%)
(uo, 1) — @(.,T),(@VHA-V)U),

where v(z) denotes the unit outward normal to I' at z, and 0,u stands for Vu - v.
Here H*!(Y) is a Sobolev space we shall make precise below. In the present
chapter, we address the stability issue for the inverse problem of recovering the
magnetic field da 4 defined by (6.2) and the time-dependent potential ¢ appear-
ing in the dynamical Schrodinger equation (7.1), from the knowledge of the

operator Ay 4.

7.2 Well posedness

The study of an inverse problem often requires a good knowledge of the direct
problem. So let us first establish the existence, uniqueness and continuous de-
pendence with respect to the data, of the solution u of the Schrédinger equation
(7.1) with non-homogeneous Dirichlet-boundary condition f € Hg"'(X) and an
initial data uy € Hj(Q) N H?(Q). To this end, we introduce the following Sobolev
space

H*Y(X) = H*(0,T; L*(T)) N L*(0, T; HY(T)),
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equipped with the norm

[ f ez cs) = I fllmz0.e2@y) + 1|l 220.25m0 (0
and we set
Hy'(2) = {f € H*'(Z), f(.,0) = d.f(.,0) = 0}.
Then we have the following theorem.

Theorem 7.2.1. Let T > 0 and let ¢ € WH*(Q), A € CY(Q) and ug € H () N
H?(Q). Suppose that f € Hy'(X). Then, there exists a unique solution u €
C(0,T; H'(Q)) of the Shrodinger equation (7.1). Furthermore, we have d,u €
L*(X) and there exists a constant C' > 0 such that

(s )l ) + 10vull 2y < C (ol + [ llazas)) -

One can consequently note that the Dirichlet-to-Neumann map A 4 , is bounded

from H?(Q) x H*'(X) to H'(Q2) x L*(X).

Proof. We decompose the solution u of the Schrédinger equation (7.1) as u =

uy1 + ug, with u; and uy are respectively solutions to

(10 + Ag)u; =0 in Q (i0y + Ag + qJug = —qui in Q
uy(z,0) =0 in Q , us(z,0) = ug in Q
ur(z,t) = f on X us =0 on .

Using the fact that f € Hy' (%), we can see from [5][Theorem 1.1] that

u; € CH0,T; H'(Q)), (7.2)
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and

usllero,r;mr @) < Cllf g2 03)- (7.3)

Moreover, we have d,u; € L*(X), and we get a constant C' > 0 such that

10vurllz2cey < Cll fll2a(s). (7.4)

On the other hand, from [16][Lemma 2.1] , we conclude the existence of a unique
solution

uy € CH(0,T; L*(Q)) N C(0, T; H*(Q) N H (Q)), (7.5)

that satisfies

IN

C (lgunllwsaoz:020) + luollmgrm2) -

< C (ol + 1 fllmzacsy)) - (7.6)

[z (s Ol 3 e

N

Next, we consider a C? vector field N satisfying
N(z)=v(z), z€l, [N(@)|<1, z€Q.

Multiplying the second Schrodinger equation by N.Vi, and integrating over () =
Q2 x(0,T) we get

T T T
—/ / quy NNy dedt = z/ / T Av d;vdt+/ /AUQN.Vﬂgdxdt
0 JQ 0 ,19 0 Q

0

By integrating with respect to ¢ in the first term I, we get

]1:2'/
Q

T T
i / / NV (us Ottz) dx dt + i / / Oytts N.Vuy da dt.
0 Q 0 Q

ug(z, T) N.Vuy(z,T) — ug(z,0) N.Vuy(z, O)} dx
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Therefore, bearing in mind that i0;us = —q U — Aaus — qlia, we get

ORI, = z/ us(w, T) NV (z, T) — uo N. Vg
Q
T
—/ /diqu|u2|2dmdt+/ /VA(divNuz).VAﬂzdxdt
0 T Q T 0 Q
—i/ /U/QatEQ dadt—/ /8Vﬂ2(u2 div N) do dt.
0 T 0 b))

T
da:—/ /diquugﬂldxdt
0 Q

As the last term vanishes since uy = 0 on X, we deduce from (7.6) that

R 1] < C (1 g + luol3om: ) -
On the other hand, by Green’s Formula, we have

L = —/OT/QVuQV(N.VuQ)dxdtJr/OT/Fﬁ,,uQ(N.VuQ)dadt
_ —/OT/QVuQ.V(N.VuQ)dxdt—l—/OT/Fl&,ug\zdadt.

So, we get

T 1 (T
L = / /|8Vu2|2dadt——/ /div(|Vu2|2N)dxdt
01 I 2Jo Ja T
+7/ /|Vu2|2didemdt—/ /DN(VUQ,ViTg) dz dt.
2Jo Ja 0 Ja

Thus, we have

T 1 (T
L = / /|ayu2\2—f /\vu2|2N.udadt
01 T 2Jo Jr .
+—/ /yvuzdeide:cdt—/ /DN(VuQ,VuQ)da:dt.
2Jo Jo 0 JO

Next, using the fact that

[Vus* = [0,us)” + [Vous? = [0,usf*, 2 €T,
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where V, is the tangential gradient on I', we obtain

1T 1T
RI, — f/ /\8l,u2|2dadt+f/ Vus|? div N d dt
2 Jo_Ja 2 Jo

—/OT/QDN(VuQ,Vuz)dxdt.
Moreover, by (7.6), it is easy to see that

R I5) < C (1 132 + luolFanm) -
so that, we deduce from the above statements that

lovuzlloey < C(I1f a2 + luollmn:)

From the above reasoning, we conclude that v = u; + uy € C(0,T; H'(2)), d,u €
L*(¥) and we have

(s )l ) + 10l 2y < C (Il + luollmynme) -

7.3 Geometric optics solutions

The present section is devoted to the construction of suitable geometrical optics
solutions to the magnetic Schrodinger equation (7.1), inspired by techniques

used for elliptic problems.

7.3.1 Preliminaries

In this section, we collect several technical results that are needed to construct

geometric optics solutions to the equation (7.1). We first introduce the following
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notations. Let P(D) be a differential operator with D = —i(9;,0,). We denote
by

ol

P(e,r) = (Z 3 \afagp(gm)y?) . feR" reR

keN aeNn

For 1 < p < oo, we define the space
B 5 ={f € S(R™), PF(f) e IR},
equipped with the following norm

1£lls, = IBF(lzognsry

We finally denote by
B ={feS'®R™), of € B,5 Yy e CF R}

We start by recalling some known results of Hormander:

Lemma 7.3.1. Letu € B__ 5 and v € C°(R™™"). Then, we have wv € B and

P oo,ﬁ’

luvlly, 5 < Cllul

oo,ﬁ’
where the positive constant C' depends only on v, n and the degree of P.

Lemma 7.3.2. Any differential operator P(D) admits a fundamental solution

Ie Bi(;c’; satisfying m € Booﬁ. Moreover, it verifies

— | s<C
Hcosh|(1:,t)|H°°7P_ ’

where C' is a positive constant that depends only on n and the degree of P.

Our first goal in this section is to prove the following theorem:
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Theorem 7.3.1. Let P # 0 be a differential operator. Then for all k € N, there

exists a linear operator
E: L0, T; H*(Q)) — L*(0,T; H*()),

such that:

1. P(D)Ef = f, for any f € L*(0,T; H*()).

2. For any linear differential operator with constant coefficient Q(D) such that

M is bounded, we have Q(D)E € B(L?(0,T; H*(Q))) and
P&, 7)

'Qg” N

|Q(D)E f || 20,m;m% () <CSUP 0

where C' depends only on the degree of P, 2 and T
Proof. Let f € L*(0,T; H*(Q)). There exists an extension operator
S L20,T; H¥(Q)) — L0, T; H*(R"))

f — I
such that for all ¢ € (0,7"), we have f(.,t)m = f(.,t). Next, we introduce

f, te(0,T), zeR"

fo=
0, t¢(0,T), z€R"

So, we have ﬁ)@ = f. Let R > 0 and V be a neighborhood of Q). We consider
¥ € C°(R™) such that 1y = 1 and satisfying supp ¢ C B(0, R) C R""'. Let F

be a fundamental solution of P. We consider the following operator

E: L0, T; H*Q)) —  L*(0,T; H*())
[ — E(f)=(F =y
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Since P(D)(F ;Z;fvo) = 1 f,, then we clearly have

P(D)Ef = (Y fo)ig = f.

We turn now to proving the second point. For this purpose, we consider ¢ €

Cs°(R™*1) such that ¢ = 1 on a neighborhood of the closure of {z —y, =,y € Q}.

We can easily verify that

(F* ¢ fo)iq = (oF * ¥ fo)q

The last identity entails that for all & € N*, such that |a| < k, we have

10°Q(D)Efl| 20

Using the fact that

Q& m)F(pF) =

QD) (F % ¢ fo)l| (o)
1Q(D)PF % 8*(¢ fo) | (@)
)

< QID)pF = 8“(¢fo)llm Rn+1)

< HI<Q(D @F*aa(wfo)wm(w“)

< Q& T)F(eF)F(* (¥ fo))ll 2 @nsy

< Q& T)F (O F) || oo 1) |0% (¥ fo) || L2 @n1y

< QU T)F(oF) || oo wnen) [|0° f | 12(q) (7.7)
%Eg: g P& T)]:<SO cosh|(z 1) coshﬁ’:c, ) > ’

we deduce from Lemma 7.3.1 and Lemma 7.3.2 that

1Q(, 7)F

Q7))

(OF)||lpemnity £ C sup  —= . (7.8)

(emerntt P(&,T)
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Then from (7.7) and (7.8), we get

(63 Q 57 T n
||8 Q(D)EfHL?(Q) S C sup MH‘]['HLQ(O,T;H]C(Q)), VaeN 5 ‘CY| S k.
(er)erntt P(E, T)

(7.9)

Thus, we find that
QT
IQDE Sy < € s ZED W sy

which completes the proof of the lemma. 0

Let w = wy + iwg be a vector such that wy, wg € S" ! and wy . ws = 0. We

state the following known lemma from [40]

Lemma 7.3.3. Let v > 0, k > 0 and let g € WFH®(R") be such that Supp
g C B(0,r) = {z € R", || < r}. Then the function ¢ = N;(g) € WHE>(R")
solves N, (¢) =w- Vo = g, and satisfies the following estimate

[@llws.oo@ny < C llgllws.oo gy,

where C' is a positive constant depending only on r.

7.3.2 Construction of geometric optics solutions

For o > 1, we define the complex variable p as follows
p=ow+y, (7.10)

where y € B(0, 1) is fixed and independent of ¢. In what follows, P(D) denotes

a differential operator with constant coefficients:

P(D)= Y a,D* D =—i(0,0,).
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We associate to the operator P(D) its symbol p(¢, 7) defined by

P& T) = > aals, 1), (§7) ERML

laf<m

Moreover, we introduce the operators
A,=A—-2ip-V and V,=V —ip.

We turn now to building particular solutions to the magnetic Shrodinger equa-
tion. We proceed with a succession of lemmas. As a consequence to Theorem

7.3.1, we have

Corollary 7.3.1. Let P # 0 be an operator. There exists a linear operator E €
L(L*(0,T; H(2))), such that:

P(D)Ef = f, forany f € L*(0,T; H(Q)).

S
Moreover, for any linear operator S with constant coefficients such that | ~((§T))|
P\, T
is bounded in R™*!, we have the following estimate
S,
||S(D)Ef||L2(O,T;H1(Q)) S C sup | ~< )l ||f||L2(0,T;H1(Q))- (711)
rotr P(E,T)

Here C' depends only on the degree of P, ) and T

Lemma 7.3.4. There exists a bounded operator E,, : L*(0,T; H(Q)) — L*(0,T; H*(Q2))
such that

P,(D)E,f = (i0; + A,)E,f = f forany f € L*0,T; H'(Q)).

Moreover, there exists a constant C(Q,T) > 0 such that

C
| Eo fl 220,110 (0)) < m”f”L?(O,T;Hl(Q))’ k=1, 2. (7.12)
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Proof. From Corollary 7.3.1, we deduce the existence of a linear operator E,
£<L2(0,T; HI(Q))> such that P,(D)E,f = f. Moreover, since [p,(§,7)| > o, we
get from (7.11)
C
1Ep fllz20rm @) = — 1 Fllz2o,mim - (7.13)
iy

Po(&,7)

Similarly, since is bounded on R"*!, we get

IVE, fllz20m:m1 @) < Cllflzz0.150 @))-

From this and (7.13) we see that F, is bounded from L*(0,T; H'(2)) into L*(0, T; H*(2)).
0J

Let us now deduce the coming statementfrom the above lemma.

Lemma 7.3.5. There exists € > 0 such that for all A € W1°°(Q) obeying
[Allwre) < €, we may build a bounded operator F, : L*(0,T; H'(Q)) —
L2(0,T; H*(QY)) such that:

(10, + D, + 2A-V)F,f = f, forany f € L*(0,T; H'(Q)). (7.14)

Moreover, there ezists a constant C'(2,T) > 0 such that

C
| Fpf Nl 20,00 (0)) < ik | flle20mmr @), k=1, 2. (7.15)

Proof. Let f € L*(0,T; H'(Q)). We start by introducing the following operator

S,: L*0,T; H*(Q)) — L*(0,T; H*(Q))
g — E,(-20A-Vg+ f).

Since || A1) < €, we deduce from (7.12) with k£ = 2 that

1S,(h) = Sp(9llz20mmz)y < Cellh = gllr20.m:m2(0)), (7.16)

133



for any h, g € L*(0,T; H*(Q2)). Thus, S, is a contraction from L*(0,T; H*(2))
into L*(0,T; H*(Q2)) for € small enough. Then, S, admits a unique fixed point
g € L*0,T; H*(?)). Put F,f = g. It is clear that F,f is a solution to (7.14).
Then, taking into account the identity S,F,f = E,(—2iA-VF,f + f) and the
estimate (7.16), we get

I Epfllzeommz)y = ISpFof — Sp(0)llz20,m:m200)) + 19,(0) || 220,152
< Cel|F,fllz2omm2 @) + 1 Eofll20,0:m2(0)) -

From this and (7.12) with £ = 2, we end up getting for € small enough

1 Fp fll 20,7020 < Cllfle20,mm 0)- (7.17)

This being said, it remains to show (7.15) for £ = 1. To see this, we notice from

(7.12) with k = 1 that

| Fo fllzeom)y < B (=2iA-VE,f + f)llz20,1;0 )
C

o

IN

(N Eof 2020 + I fll20 @) -

Then the estimate (7.15) for k& = 1 follows readily from this and (7.17).

Lemma 7.3.6. There exists € > 0 such that for all A € WhH°(Q) obeying
[Allwre) < e, we may build a bounded operator G, : L*(0,T; H'(Q)) —
L*(0,T; H*(Q)) such that:

(10 + A, + 2iA-V,)Gof = forany f € L*(0,T; H'()). (7.18)

Moreover, there exists a constant C'(2,T) > 0 such that

C
|G o fllL207:mx () < PR 1 fllzorm@)y, k=1,2. (7.19)
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Proof. Let f € L*(0,T; H'(Q)). We introduce the following operator

R,: L*(0,T; H'(Q)) — L0, T; H'())
g — F,(=2p-Ag+f)

From (7.10), we see that |p| < 30. Thus, arguing as in the proof of Lemma
7.3.5, we prove the existence of a unique solution G, f = ¢ to the equation (7.18).

Moreover there exists a positive constants C' > 0 such that we have

C
||U||L2(0,T,H1(Q)) < ;Hf“L?(O,T;Hl(Q))- (7-20)

Further, combining the definition of R, with (7.14) we deduce (7.19) for k = 2. [

Armed with lemma 7.3.6, we are now in position to establish the main result

of this section, which can be stated as follows

Lemma 7.3.7. Let M >0, >0, w € S" ! and A € A. satisfy || Allwreo@) < e.
Put ¢ = N, '(—w.A). Then, for all ¢ > oo > 0 the magnetic Schrodinger equation

(10 + Aa + q(z,t)u(z,t) =0, inQ (7.21)
admits a solution v € H*(0,T; H'(Q)) N L*(0,T; H*(Q)), of the form
u(z, t) = e‘i((”"’)t”"’) (€@ + w(z, 1)), (7.22)

in such a way that

w-Vo(x) = —w-A(x), z=eR" (7.23)

Moreover, w € H?(0,T; H*(2)) N L?(0,T; H*(Y)) satisfies

ollwllmomm @) + lwllzzomm2@) < C, (7.24)

where the constants C' and o depend only on Q. T and M.
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Here we extended A by zero outside ().

Proof. To prove our lemma, it is enough to show that w € H?*(0,T; H'(Q)) N
L*(0,T; H*(Q)) satisfies the estimate (7.24). Substituting (7.22) into the equation
(7.21), one gets

(i@t YA, 1 2iA() -V, + bz, t) )w(w, £) = —ei¢la) (iAgb(m) — V(22 + 200 - Vo(z)
+20w- A(x) + 2y - Vo(r) + 2A(z) -y — 2A(x) - Vo(x) + h(x, t)),

where h(x,t) = idivA(z) — |A(z)|? + q(z,t). Equating coefficients of power of |o]|
to zero, we get w-Vo(x) = —w- A(x) for all x € R™. Then w solves the following
equation

(10, + A, + 2iA(x) -V, + h(z, 1)) w(z,t) = L(x, ), (7.25)

where

L(w,t) = =D (iA¢(x) = [V(x)*+2y - Vo(x) +2A() -y =24 - V() +h(z, 1))
(7.26)
In light of (7.25), we introduce the following map

Up: L2(0,T; HY(Q)) — L*(0,T; H'(2)),
w —  Gy(—wh+1L).

Applying (7.19) with k = 1 and f = h (w—w), we get for all w, @ € L*(0,T; H(Q))
that

1Up(w) = Up(@) | 201510y = [|Gp(h (w = @))[[ 120,731 (52
C

< ;thlxllw — || 20,7501 (9))-

Taking oy sufficiently large so that oy > 2C||h|x, then, for each o > ¢, U, admits

a unique fixed point w € L*(0,T; H'(Q2)) such that U,(w) = w. Again, applying
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(7.19) with £ =1 and f = —hw + L, one gets

lwllr2omm@) = [Go(=hw + L)|[ 12007, 0))
1 C
§HwHL2(O,T;H1(Q) + ;HLHLZ(O,T;Hl(Q))-

IA

Therefore, in view of Lemma 7.3.3 and (7.26), we get

AlQ

|w]| 20,701 0)) < —- (7.27)

Next, differentiating the equation (7.25) twice with respect to ¢, taking into account
that ||h||x is uniformly bounded with respect to o, and proceeding as before, we
show that

. k=12 (7.28)

C
10fw|| 20,1111 () < p

Finally, from (7.27) and Lemma 7.3.3, we obtain

Hme(o,T;Hz(Q)) < C| 5 wh + L”L2(07T;H1(Q))
o(HhHX + C) <c, (7.29)
g

IN

by applying (7.19) with & = 2 and f = —wh + L. Thus, we get the desired result
by combining (7.27)-(7.29).

7.4 Stable determination of the magnetic field

This section is devoted to establish a stability estimate for the determination
of the magnetic field from the Dirichlet-to-Neumann map A4,. We prove the

main statement of this section, by means of the geometrical optics solutions
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constructed in the previous section of the form
(@, 1) = e*i((ﬂj -Pj)tJrz‘Pj) <6i¢j(x) =+ wj(x,t)), j=1,2, (7.30)

associated A; and ¢;. Here we choose p;, = ow; and we recall that the correc-
tion term w; satisfies (7.24) and that ¢;(z) = Nw}l(—wj.Aj) solves the transport

equation

wi Vo,(z) = —wj. A(z), = €R"

Let us specify the choice of p;: we consider { € R" and w = wy + iwg with

wy, wg € S"! and wx.wy = Ewyg = E.wg = 0. for each o > |£]/2, we denote

_ § €12 _
pr=0liwg+ | —==+4/1— "Sws | | =ouw], (7.31)

20 402

_ : € €17 .
p2 =0 | —iwg + +4/1— wg | | = ow;s. (7.32)
20 402

Notice that p;.p; = 0. In this section, we aim for recovering the magnetic field

da 4 from the boundary operator

Aay: LA(Q) x H*Y(Z) — HY(Q) x L*(%)
g = (uo, f) — <u(.,T),(3l,+iA-l/)u>.

We denote by
Azl4,q =u(.,T), AZA,q = (0, +iA-v)u.

Let us recall the following technical result from [39] that will be used later

Lemma 7.4.1. Let A € C.(R"), £ € R", and w = wy + twg with wg, wy € S*!

and wg - wg = wg - £ = wg - £ = 0. Then we have the following identity

/w-A(x)eiNJl(_“'A)(x)eig'xd:zc:/ w-A(z)e™ “dr.

n
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We start by establishing an orthogonality identity for the magnetic potential
A=A — As.

7.4.1 A basic identity for the magnetic potential

In this section, we derive an identity relating the magnetic potential A to the

solutions ;.

Lemma 7.4.2. Lete > 0, A; € A. and u; be the solutions given by (7.30) j =1, 2.
Then, for all £ € R™ and o > max(oy, |£|/2), we have

/ iA(x) - (UTVW — UQVQTl) dx dt = / A(z) - (p2 + ﬁ)e‘“‘gei(d’?_a)(m) + 1(&,0),
Q Q

where the remaining term [(€, o) is uniformly bounded with respect to o and &.

Proof. In light of (7.30), we have by direct computation

WVUQ — U2Vu71 — e_ix : (P2_ﬁ) — ipzei((bQ_a) — Zmel(%—a)
+iv¢gei(¢2*a) + ivaei(@*a) — z'pgwge*"a — iprwie’??
+Vwge 0 — Ve — ipwie'® — iprwge 4 iV o2

+iws Ve " — ipowoty — ipriiws + Vwewr — Viiws | .

Therefore, as we have ps — p; = &, this yields that
/Q iA(x) - @Yy — wpVay) dedt = /Q A(z) - (p2 + pr)e" @5 @2=0D qy dt + I(€, o),
where (£, o) = /Q PA(z) - (¢1(x,t) +s(z, t)) dz dt, and 91, ¥y stand for
Y1 = —i(p2 + p1) <w2€7ia +wre'” + w2771) ;

vy = €9 (iVeymr — VIr) + e %1 (Vuy + iViws)
+Vwyy — Vws + i(v¢2 + va) ei(@2=61),
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In view of bounding |I(§, )| uniformly with respect to £ and o, we use the fact

that A is extended by zero outside 2 and use Lemma 7.3.3 to get
[@5llLee(0) < CllAjllLe@ny < Ce,  j=1,2.
Recalling (7.23) and (7.24) and applying Lemma 7.3.3, we get

Wlnasc(c+-)sc j=12 (7.33)

which yields the desired result. O

With the help of the above lemma we may now derive the following orthogo-

nality identity for the magnetic potential.

Lemma 7.4.3. Let £ € R" and o > max(oo, |£|/2). Then, we have the following

identity
/ A(z) - (py + pr)e @ Eei(®2=01) du dt = ZJT/ - Alx)e ™ S dr + J(€,0),
Q Q

with |J(&,0)| < C|¢|, where C' is independent of o and &.

Proof. In view of (7.31) and (7.32), we have

/ A(z) - (pa + pr)e ™ €e'®200) dy dt = 20/ w- A(z)e ™ el ®2=9) qp dt
Q

Q
—20 (1 —/1- |§]2/40'2> / wy - A(x)e™ @ i@ da dt - (7.34)
Q
where we recall that
O = N%(—E'Al); P2 = No:;l(—w; - Ag).

Set W, = N>'(—w- Ay) and Uy = NS'(—w- Ay) in such away that we have

Uy — Ty = Ny (—(=@- A)) = —N; ' (—@- ),
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Then, we infer from (7.34) that
/Q A@) - (po +Pr)e ™ Sl dadt = Ji(&,0) + (&, 0) + J5(E, 0),
where we have set
Ji(&,0) = QJ/Qw- A(z)e ™ €270 g dt,

Jo(&0) = —20/ T-Az)e ™ ¢ (ei(%"ﬂ) - 6i(¢2’a)) dx dt,
Q

and

Ty(€,0) = —20 (1 _Ji- \512/402) /QW%-A(x)em'fei(@‘bl) de dt.

Using Lemma 7.4.1, one can see that

J1(570> = QUT/QQ.A(x)eiNgl(—w-(—A))e_ix.gdx
= 2T [ @A) < dud,
Q

Now it remains to upper bound the absolute value of J := J, + J;3. We start by

inserting ¢/(Y2=9) into J,(£, o), getting
Jo(€, _ 9 T/ 5. A —iv € (i (oW1 —idn) 4 omibr (%2 _ io2)) gy
2 (&, 0) o | @ (x)e (e (e e ) e (e e )) x

Further, as N;!'(—w- A) depends continuously on w, according to Lemma 2.4 in

[47] we get for all |£| < 20
| 12(&,0)| < Cro (@ — wf| + @ — wj]) .

Hence, as 1 — /1 — [£|2/402 < |€]?/40? for all [¢] < 20, we deduce from (7.31),
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(7.32) and the above inequality that

2
M@Msw@m+%oswm

402

Arguing in the same way, we find that |J5(§, 0)| < Cr|€], for some positive constant

C7 which is independent of £ and o. 0

7.4.2 An estimate for the Fourier transform of the magnetic
field

We aim to relate the Fourier transform of the magnetic field day, — daa, to the
measurement Ay, ,, — A4, q,. To this end, we introduce the following notation:
we put

ap(z) = (A1 — Ag)(z) - ex = A(x) - eg,
where (e )y, is the canonical basis of R", and

day, da;
) — 2

= — ,k=1,..,n. 7.35
G (1) = Gl k=1 (7.3

7k (2)
We recall that the Green formula for the magnetic Laplacian
/Q(AAUU —uAv)dr = — / ((8V + iv.A)ut — u(0, + iA.l/)v) do,,  (7.36)
r

holds for any u, v € H'(Q) such that Au, Av € L*(Q2). Here do, is the Euclidean

surface measure on I'. We estimate the Fourier transform of ¢;;, as follows.

Lemma 7.4.4. Let £ € R" and o > max(0o, |£|/2), where oq is as in Lemma

7.8.7. Then we have

L i 1
<€ 5] < O (I~ Aaall + 5 +15).
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where C' is independent of & and o.

Proof. First, for 0 > 0y, Lemma 7.3.7 guarantees the existence of a geometrical

optic solution us, of the form
us(,t) = (0 4wz, )

to the magnetic Schrodinger equation

(10 + An, + @2z, t))ug(z,t) =0 in @,

ug(z,0) = ug in €,

(7.37)

where p, is given by (7.32). Let us denote by f, := ugx. We consider a solution

v to the following non homogeneous boundary value problem

(10 + Aa, + q1(z,t))v =0 in @Q,
v(.,0) = uz(.,0) = ug in Q, (7.38)

v=uy = f, on .

Then, u = v—1us is a solution to the following homogenous boundary value problem

for the magnetic Schrodinger equation

(10 + Aa, + q1(x,t))u = 20A-Vus + h(x,t)us in Q,
u(z,0) =0 in
u(z,t) =0 on %,

where
A=A — Ay, q=q—q¢ and h=idivA — (|A]> —|A?) +q.

On the other hand, with reference to Lemma 7.3.7 we consider a solution u; to the

magnetic Shrodinger equation (7.21), associated with the potentials A; and ¢, of
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the form

uy(x,t) = e~ =P (9@ Loy (z, 1)),

where p; is given by (7.31). Integrating by parts in the following integral, and
using the Green Formula (7.36), we get

/Q(iat + A, + q)utiddt = /Q 2iA - VuyTidadt + /Q (z’divA — (JA? — |As) + q) wyirdadt
X

This entails that

/ 2iA - Vugurde dt = —z/(AA2 o — Al )@ da:—i—/ 2 P A%, ) (9)un doy dt
—/(ZleA — (|41 = |A2®) + q)uQuldxdt,
Q

where g = (ugji—0, u2)s2). Upon applying the Stokes formula and using the fact that
A =0, we get

/Q iA.(mVug—UQVm)dxdt:—z/ (A=Al g ) (9) 1(.,T)da:4f (A%, 5~ A%, ) (9) Tido,dt

+ /Q <|A1|2 _ AP + q) wyrdadt, (7.40)

This, Lemma 7.4.2 and Lemma 7.4.3, yield

[ @A da] < T (1A= Aasall I9lmperrss o 0llaeywnio +C-+el)

where ¢ = (Ui, Ur—r). Here we used the fact that ||usui|/zi(q) < Cr, for o

sufficiently large. Hence, bearing in mind that

9]l 2@y xm21s) < Ce7, and ||@|r2(syxr2ie) < Ce7,
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we get for o > [£]/2,

w- A(z)e ™ ¢ d
/Qw (x)e x

so(e“||AA2,q2 Ayl + & +'5‘) (7.41)

Arguing as in the derivation of (7.41), we prove by replacing @ by —w, that

o A —z’;r'&d
/Qw (x)e x

sc(e“HAAQ,@ Mgyl + 4 +'5') (7.42)

Thus, choosing wg = =44 multiplying (7.41) and (7.42) by |€e), — Exe;], and

|§jex—Eresl’

adding the obtained inequalities together, we find that
[ @) - @as(a) el < Clga-esl (< n — Anal + 5+ 1),
From this and (7.35) we deduce that

0k(§)] < C < &> <€CU||AA2,q2 Aay gl + + |£|> . j,keN.

This ends the proof. O

7.4.3 Stability estimate for the magnetic field

We are now in position to show the first result of this chapter which can be stated

as follows

Theorem 7.4.1. Let o > §+1. Let q; € Qur, A; € Ac, such that || A;| geo) < M,
fori =1,2. Then, there exist three constants C > 0 and p,s € (0,1), such that

we have
Hdaz‘\l - daAzuLoo(Q) <C (||AA27¢I2 - AAl,!h ”1/2 + | 10g HAAQ,% - AAlgth‘_ﬂ) .

Here C' depends only on 2, ¢, M and T and A.( resp.,Qp) is given by (6.3) (resp.,
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6.4).

Proof. In order to prove this theorem, we first need to bound the H~(R™) norm
of davy, — day,. In light of the above reasoning , this can be achieved by taking

o > R > 0 and decomposing the H'(R™) norm of o}, as
ol = [ 10:x(@OF <€>7 det [ [3,()F <> de.
Then, we have
IalFy sy < C[R7 < € > Ballim ooy + i loslEacen|
which entails that

2 < O[r () Anp — a2+~ + & !
o k1771 emy < A — AaraT+ 5+ —5 |+ 25|

R2
by = %. In
this case we get for o > max(0y, |£]/2), that

2n_ . =4
lojullis@ny < C (0757 | Auygy — Aay g lI* + 0757)
1
= C <GCOU||AA27Q2 — Mg ”2 + (T“) 3 (7.43)

where 1 € (0,1). Thus, assuming that ||[Aa,q, — Aa, gl < ¢ = e Comax(oolél/2)]

and taking o = Ciol log [[Aay.g — Aayqll] in (7.43), we get that

HOJ kHH HR) < ¢ (HAAz q2 AAM]l H1/2 + | lOg ”AA27112 - AA17Q1 “|_Ml> !

for some positive p’ € (0, 1). Since the above estimate remains true when [[Ay4, ,, —

A, .qll = ¢, as we have

2M 2M
||‘7] kHH RIS 1/2 c'/? < 17/2HAA2,q2 - AAl,(hHl/27
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we have obtained that

HdOCAl - do‘A2HH_1(Q) < C (HAA2,Q2 - AAhqul/Q + ’ lOg HAA27(12 - AALQI H|_M/) :

In order to complete the proof of the theorem, we consider § > 0 such that a :=

s —1 =5 + 20, use Sobolev’s embedding theorem and we find

IN

|daca, — daa, ||~ Clldaa, — doa, ||, 5+

(Q)
1—
Clldea, — do, |3 o) ldeva, — doa,|

N

B
H.sfl(Q)

_\1-8
C (1M nrgy = Ay g 12+ [0 [ Ay — Aaynl17#)

IN

by interpolating with 8 € (0,1). This completes the proof of Theorem 7.4.1. [

This theorem is a key ingredient in the proof of the result of the next section.

7.5 Determination of the electric potential

Using the geometric optics solutions constructed in Section 7.3, we will prove
with the aid of the stability estimate obtained for the magnetic field, that the
time-dependent electric potential depends stably on the Dirichlet-to-Neuamnn

map Ay ,.

7.5.1 Preliminaries

Lemma 7.5.1. Let Q C R" be a simply connected domain, and let A € C*(Q2, R™)
be such that Air = 0. Then, for p > n, there exists a function ¢ € C*(Q) such
that or = 0 and A’ € WHP(Q,R"), satisfying A = A"+ Vp, A ANv =0, and

divA’ = 0. Moreover, there exists a constant C > 0, such that

A lwir) < C|lcurl A'|| gy (7.44)
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Proof. Let ¢ be the solution of the following problem

Ap =divA, in()
(7.45)
p =0, inl"

Then, setting A" = A — V, using the fact that A = ¢;r = 0, one gets
ANv=ANv—VpAr=0, and divA'=0.

In order to prove (7.44), we argue by contradiction. We assume that for all & > 1

there exists a non-null A’ € W2(Q) such that

||JZZ||W11P(Q) >k HCUﬂZ'kHLP(Q)- (7.46)

A
We set Aj, = ————— Then we have || A [lw1.r(e) = 1 and k [[curl Ay o) < 1.
||A kHWLP(Q)
In view of the weak compactness theorem, there exists a subsequence of (A},)x such

that A}, — A" in WHP(Q). Using the fact that W1?(Q) — L?(Q), we deduce that

Al — A" in LP(Q). As a consequence, we have
|A" lwir@) =1 and |curl A'||1p) = 0.

This entails that there exists n € W1P(Q) such that A’ = V5. Then, using the
fact that div A’ = 0 and A’ A v = 0, we deduce that there exists a constant A € R

such that
An =0, inQ

n=2A inI.

Finally, using the fact that € is a simply connected domain we conclude that n = A

in Q. This entails that A’ = 0 and contradicts the fact that ||A'|y1s@) =1. O

As a consequence of Lemma 7.5.1, we have the following result

Lemma 7.5.2. Let Q C R" be a simply connected domain, and let A € C*(Q,R™)
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such that Ajr = 0. If we further assume that div A = 0, then the following estimate
| Allwir) < C |lcurl Al| o),

holds true for some positive constant C' which is independent of A.

In order to identify the magnetic field, we should normally apply the Hodge
decomposition to A = A; — Ay = A’ + Vo and use (7.44) which holds for any
p > n. But in this chapter, since wu is not frozen to zero, we don’t have invariance
under Gauge transformation, so will further assume that A is divergence free in
such a way that the estimate (7.44) holds for A’ = A.

For a fixed y € B(0,1), we consider solutions u; to the Schrédinger equation
of the form (7.30) with p; = ow: + v, where ¢ € R" and w € S*! are as in the
previous section, and w}, j = 1,2, are given by (7.31) and (7.32).

In contrast to the previous section, y is no longer equal to zero, as we need to

estimate the Fourier transform of ¢ with respect to x and ¢.

7.5.2 An identity for the electric potential
In this section, we establish a preliminary identity for the electric potential.

Lemma 7.5.3. Let u; be the solutions given by (7.30) for j =1,2. For all ¢ > oy
and £ € R™ such that |£] < 20, we have the following identity

/ Q<x7 t)u2mdx dt = / Q(x, t)e—i(2y‘§t+m.§) dz dt + Pl (57 Y, U) + P2(§7 Y, 0)7
Q Q
where Py(&,y,0) and Py(&,y,0) satisfy the estimates

€l
o

C
Aol < (e +2), inGuol<E.

Here ¢ is as in Lemma 7.3.7 and C' is independent of o, y, and .
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Proof. In light of (7.31), (7.32) and (7.30), a direct calculation gives us

—i (p2-p2—p1-p1)t+56-(p2—p1)) ) - — .
Uy = e ( P27 e~y + 27 + woly

_ o iusttag) —i(d1—¢2) + e i2ysttag) (ewaQ 1 el o+ wzw—l) (7.47)
which yields
/ Q(xv t)u2u71 drdt = / Q<x7 t)efi(Qy.&H»x.S) dx dt + Pl(fv Y, U) + PQ(f? Y, 0)7 (748)
Q Q

where we have set

Pi(§y,0) = / q(:C,t)e*i@y'ft”'g)efigl (eid’2 — e@l) dz dt,
Q

Py(&,y,0) = /Q g, 1)e2 ) (e, 4 7+ wywy ) dadt.

Recalling that ¢; = N;f(—w; -A;), for j =1, 2, we deduce from the definition of
Pl that

iN_(—w3 - Ag) iNH(—ws - Ar) iN(
2 —e [zoe@) + [le 2

Py )< C e

with C' > 0 is depending on T', M, Q and ||A;||. Using the continuity of N;(—w- A)
with respect to w (see Lemma 2.4 in [47]), we get that

Pi(&y,0)] < O (IN2, ™ (= Ao) = N (—w.An) o) + |wf — )
§

¢ <||A||Loo(9) + H) :
o

On the other hand, from Cauchy Schwarz inequality, Lemma 7.3.3 and (7.24), we

IN

get

|P2(€ay70)|

IN

IN

C
¢
o
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This completes the proof of Lemma 7.5.3. 0

7.5.3 An estimate for the Fourier transform of the electric

potential

In view of relating the Fourier transform of the electric potential ¢ = ¢; — ¢ to

A, g — A, q,, we first establish the following auxiliary result

Lemma 7.5.4. For any 0 > oo and £ € R™ such that |§| < 20, we have the

following estimate
(6, 209)] < (MM pss — Al +e ey, — day ey + 5+ ),

for some C' that is independent of || and o.

Proof. First, for ¢ > 0(, Lemma 7.3.7 guarantees the existence of a geometrical

optics solution uy of the form
ug(x,t) = e*i((P2~ﬂ2)t+m~p2)(ei¢>2($) + wy(z, 1)),

to the magnetic Schrodinger equation

(Zat + AAQ + q2(x,t))u2(w, t) =0 in Qa

(7.49)
us(x,0) = ug in Q,
where py is given by (7.32) and ws(x,t) satisfies
ollws || g20,,m11 @) + lwall 220,112 < C (7.50)
Let us denote by f, := ugy. We consider a solution v to the following non
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homogeneous boundary value problem

(10 + Aa, + qu(z,t))v =0 in Q,
v(.,0) = uy(.,0) = ug in Q, (7.51)

v=1us = [, on 2.

Denote u = v — uy, then u is a solution to the following homogenous boundary

value problem for the magnetic Schrodinger equation

(10 + Aa, + qi(x,t))u = 20A - Vus + h(x,t)usy in Q,
u(z,0) =0 in
u(z,t) =0 on %,

where we recall that
A=A — Ay, q=q—q and h=idivA— (JA] - |4) +¢.

On the other hand, we consider a solution u; of the magnetic Shrodinger equation

(7.21) corresponding to the potentials A; and ¢, of the form
uy(z,t) = e—i((m-p1)t+x-m)(6i¢1($) 4w (z, 1)),
where p; is given by (7.31) and wy (x,t) satisfies
ollwill g2o,mm @) + 1wl z20,0,m200)) < C. (7.52)

Integrating by parts and using the Green Formula (7.36), we get

/Q g(z, Dugurde dt = i /Q (AL, — AL ) (9)ar(, T) da — /Z (AL, — A2, ) (g)u do dt

+/ iA(z) - (T Vg — up V) dmdt—/(|A1|2— | Ao |?) st da dt,
Q Q

where g = (ugi=0, u2)s2). To bring the Fourier transform of ¢ out of the above
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identity, we extend ¢ by zero outside the cylindrical domain (), we use Lemma

7.5.3 and take to account that
|ugtir|[ 1@y < C, and  ||[urVug||piq) + ||ue V]| i) < Co,
and get
|4(&,2y-€)] < C(IIAAQ,qz — A gl @z 101l 2 )< 2 @) + Col| All Lo + E' + i)
where ¢ = (U1, Urji=r). Now, bearing in mind that
g/l @yx iy < Ce“?,  and  ||@|lr2syxr2@) < Ce®7,
we get for all £ € R™ such that || < 20 and for all y € B(0,1),
(6201 < O(¢Anuy — Al + € Alley + 5+ 1) (759)

Finally, using the fact that || Al[y1.e) < Cllcurl Al|f~(q), (see Lemma 7.5.2), we
obtain the desired result. U

We are now in position to estimate ¢(&, 7) for all (£, 7) in the following set
Eo ={(,7) € R*"\{0}) xR, [¢] <20, [r] <2[¢]},

for any fixed 0 < a < 0.

Lemma 7.5.5. Suppose that the conditions of Lemma 7.5.4 are satisfied. Then
we have for all (§,7) € E,,

. - o a 1
86 ) < C(e% N asin = Ayl + s, = dop iy + 5+ = ). (754)

Here C' is independent of |£| and o.
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Proof. Fix ({,7) € E,, and set y = giep - &, in such away that y € B(0,1) and
2y-& = 7. Since a < o we have || < 2a < 20. Hence, Lemma 7.5.4 yields the

desired result. O

7.5.4 Stability estimate for the electric potential

We are now in position to state and prove the second main result of this chapter
which lies in the stable determination of the time-dependnet electric potential ¢

appearing in the magnetic Schrodinger equation (7.1).

Theorem 7.5.1. Let q¢; € Qu, A; € A., fori=1,2. Assume that div A; = 0.

Then there ezist three constants C > 0, and m, u € (0,1), such that we have

g1 — @lla-1Q) < CPm(n),

where
|log [log|logn[#[|* if n <m,
P () =
L Ul if n=m.
m

Here n = ||Aay.go — Ny qu ||, C depends on Q, M, € and T, and A. (resp., Q) is
given by (6.3) (resp., 6.4).

Proof. For fixed 0 < a < o, let us set F,,(¢,7) = g(a(&, 7)), for (§,7) € R*™. It is

easily seen that F, is analytic and we have for x € (N U {0})"!

|0°Fo (&, 7)| = |0%q(a(é, 1) = 8“/R » q(x,t)e_a(m’t)'(“g) dx dt
= | [ a0 by 06 )

Rn+1

Hence one gets

i}

Isl . |
|07 Fa(¢,7)] < /R a0l (2P 427 dedt < gl (21%) 2 < C

(T
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Applying Theorem 3.2.1 on the set O = FE; N B(0,1) with M = Ce®, 2p = T,

we may find a constant vy € (0, 1) such that we have

[Fa(& )] = [a(a(€, 7)| < Ce* | Follfw o). (€7) € B(0,1).

Now the idea is to estimate the Fourier transform of ¢ in a suitable ball. Bearing

in mind that aFy = E,, we have for all (§,7) € B(0,«),

(&, )| = |Fala™ (&, 7)]

IN

Oea(lﬂ)HFa”Zw(O)

IN

Ce=) 1811 2.0 (B0.0)n 50
Ce Gl oo - (7.55)

IA

The next step of the proof is to get an estimate linking the coefficient ¢ to the
measurement Aa, o, — Aa, 4. To do that we first decompose the H~'(R™"!) norm

of ¢ as follows

||q||,%{ LRy = (/|(£T)|<§ (&, 1) > 21§, 7P dE dr + = < (&,7)>72q&1))? deé“)w

|(£T
< C (a3 m0.ay + a‘QHQH%z(RnH))” -

It follows from (7.55) and Lemma 7.5.5, that

nt+l  2a(l—v) - - CYQ 1 1
HqHH L(RAH1) < C|:Ck e v ( C 7]2—|—ec ||daA1_daA2‘|%oo(Q)+0'2+0'2)+a—2y:|’

(7.56)
where we have set 7 = ||A4, 4, — A4, |- In light of Theorem 7.4.1, one gets

ntl 2a(l—vy)

3 o2 1 1

2 " 2 o2

(7.57)

The above statements are valid provided o is sufficiently large. Then, we choose
2v+n+3  a(l—-v) 2y+n+1  2a(l—7v) 9 -2

a so large that 0 = o~ 2 e 7 , and hence o™ 7 e 7+ o0 ° = a, so the
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estimate (7.57) yields
lall -1 nsry < C[ecem (7 +n° + [logn|77%) + Oﬁ} : (7.58)
where N depends on 7 and n. Thus, if n € (0,1), we have

2 eNa —92~s =2
Jall -+ sy < C (7 ogn* + 7). (759

Finally, if 7 is small enough, taking a = < log <log | log 77]703>, we get from (7.59)
that

<o+ o)

This completes the proof of Theorem 7.5.1;
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CHAPTER &

Determination of coefficients in a
magnetic Schrodinger equation
from a finite number of

measurements

The contents of this chapter are
collected in a papaer that will

appear in Inverse Problems.

8.1 Introduction

In this chapter, we study the following inverse problem: Given 7" > 0 and
a bounded domain 2 C R", n > 1, with smooth boundary I', we want to
determine simultaneously the divergence free magnetic potential of the form

a(x,t) := x(t)a(z) and the electric potential ¢(z,t) := B(t)q(x) appearing in the
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following equation

(—i0y + Ho(t) + q(z,t))u(z,t) =0 in Q =Q x (0,7),
u(z, L) = uo(z) in Q, (8.1)
u(z,t) =0 on ¥ =TI x(0,7),

where H,(t) := (iV + x(t)a)? denotes the time-dependent Hamiltonian, asso-
ciated to the magnetic potential vector x(¢)a(x). Here a = (ay,...,a,) € A :=
HY(Q)"N{a € L*(Q,R"), V-a = 0}, and g € L*>°(Q) are unknown real valued
functions. Moreover, the functions 3, x € C3(0,T;R) are assumed to be known
functions satisfying

X )= 0, X(5) £0. F(5) £ 0. (82

We denote by I't an open subset of I" satisfying an appropriate geometrical con-

dition given in Section 6.2.2 and by ¥ :=T" x (0,7).

The inverse problem we investigate in this chapter, is to know whether the
knowledge of a finite number of Neumann measurements d,us+ = (Vu - v)n+
uniquely determines a(z) and ¢(x) simultaneously. Here v(z) denotes the unit

outward normal to T" at z.

To our knowledge, there is a few results on the recovery of coefficients ap-
pearing in a Schrodinger equation, from a finite number of boundary measure-
ments. By a method based essentially on an appropriate Carleman estimate, Bau-
douin and Puel [3] showed that the electric potential in the Shcrodinger equation
can be stably recovered from a single boundary measurement. In [18] Cristofol
and Soccorsi proved a Lipschitz stability in recovering the magnetic field in the
Schrédinger equation from a finite number of observations, measured on a sub-

boundary for different choices of the initial condition w.

In the present chapter, we improve the two above mentionned results by show-
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ing that the electric potential and the magnetic field can be stably and simultane-
ously recovered from a finite number of boundary observations of the solution.
As a matter of fact, the method of derivation of the stability estimate given in
this chapter is different for the one of [18][Theorem 1.1], as second order time-

derivatives of the solution only are used.

Let us introduce some notations. Let us denote by V, an arbitrary neighbor-
hood of the boundary I'. For M > 0, and (ag,qy) € A x L>(f2), we recall the

admissible set of the unknown coefficients a and ¢:

Suml(ag, qo0) == {(a,q) € A x L>(2),such that a« = ap, and g = ¢ in V}.

8.2 Well posedness

Before dealing with the inverse problem under consideration, we need first to
justify the existence of a unique solution of (8.1). To this end, we introduce the

space H1(2) := H}(Q) equipped with the scalar product
< (A +D)Y2u, (=A + 1) > 120, for anyu, v € H, (1),
and denote by H, := H*(Q) N H, () equipped with the scalar product
< (A +Du, (A +1)v > 120 for anyu, v € H(Q2).

Here and below < -, - >;2q) denotes the usual scalar product in L*(2). Then,

we have the following theorem:

Theorem 8.2.1. Let a € A, ¢ € L®(Q,R), x € C*(0,T;R) and § € C3(0,T;R).
Then, for everyug satisfying A*ug € Ho, k = 0,1,2, and for any f € W2(0,T; Ho(Q)),
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there exists a unique solution
u € C*(0,T;Hy) NC*0,T;H,),

to the equation

(=i0 + Ha(t) + B(t)g(@))u(z,t) = f, inQ=Qx(0,T), 83)
u(z, L) = uo(z) in €. .
Moreover, there exists a constant C' > 0 such that
, j
||8§u(, t)”')‘-h(Q) <C Z ||Aku0H'Hl(Q)7 ] = O? 17 27 te (07 T) (84)
k=0

Proof. Since H,(t) is a self adjoint operator in L*({2), associated with the sesquilin-

ear form

u e |V + x(®)a) L@, u € Hy(Q),

then, it holds true (see. e. g. [18]) that the domain of H,(t) is
D(H,(t)) = Hy(Q) N H*(Q).

Further, as ¢ € L>(Q2) for all t € (0,T), we deduce from the Kato-Rellich Theorem
that
D(Ha(t) + B(t)q) = D(Ha(1)).

From [33] there exists a family of unitary operotors (U(t, s))o<s <7 in Ho satisfying

the following statements:

1. U(s,s) = Id, the identity mapping in H,,
2. U(t,s) D(Ha(s) + B(s)q) C D(Ha(t) + B(t)q), t,s € [0,T].

3. For all ¢ € D(H,(s) + B(s)q), the mapping t — U(t, s)z, is continuously
differentiable in [0, 7] and satisfies
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—i0U(t,5) ¢ + (Ha(t) + B(t)q(x))U(t, 5)¢ =0,
therefore, arguing as in [18][Section 2|, we check that

t

(- t) = U(t,g)quri/T Ut 5)f(s) ds.

2

is solution to (8.3) and satisfies the estimate 8.4. We complete the proof of this

theorem.. O

8.3 Simultaneous stable determination of the

electric and the magnetic potentials

In this section, we derive the stability estimate for ¢ and ¢ appearing in the
magnetic Schrodinger equation (8.1). Here and henceforth the symbol ”’” stands

for the differentiation with respect to ¢.

8.3.1 Linearization

Let u;, for j = 1, 2, be solutions to

(—Zat + Haj (t) + 6(t)q])u] =0 in Q,
ui(+, L) = uo(x) in Q, (8.5)

u; =0 on X.

Then, u = u; — usy is a solution to the following boundary value problem

(=10 + Hoy, + B(H)@)u= [ in Q,
u(-,£)=0 in Q, (8.6)

u=20 on X,
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where f = x(a1 — az) - (—2iV — x(a1 + a2))us — B(q1 — ¢2)us. By differentiating
(8.6), we get

(=10, + Hoy + B(t)n)v =g := f' — H, u — f'qyu in Q,
v(-,5)=0 in Q, (8.7)

v=20 on X,
with v = Q,u. Thus, w = d;v is a solution to

(=i + Ha, () + B(t)ar)w = h i= f" — 2(H], + B'gr)o — (HL, + B'a)u in Q,

w(-, ) =2x(%)(a1 — az)(x) - Vug — if' () (g1 — g2) (2)uo in €2,
w=20 on X.
(8.8)

8.3.2 Preliminary estimates

We start by stating a powerful tool introduced by A. L. Bughkeim and M. V.
Klibanov in [14]

Lemma 8.3.1. Let n be given by (6.7). Then, there exists a positive constant

k > 0, depending only on T, such that we have

T
/ / 6—2577(x,t)
0 Q

for every p € L*(Q7).

Sz dt < e,
= L2(Q)»

[, pe.)de

Proof. For v € (0,1), we define the integral I, as folows

Lim [ ] [ o) de

2

2
dx dt.

From Cauchy-Schwarz inequality, one can easily see that
EU Ry t T
L [0 [t ( [ vt F ) (1 - 5 ) de e
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Then, in light of (6.7) we get

T s (e ‘ 12(T — t)?
]A/ S[y /Qe 2sn(x,t) (atn(g;7t)e 2sn( ,t)) </T |p(x,§)|2 df) Q—Wu))dl’dt
2

(@ —

By integrating by parts with respect to t and using the fact that there exists ag > 0
such that a — e*@ > o, we get

T4

I, <
T = 2sap

(/Q /;T’Y 6_2877(50775)‘29(23, t)’g dx dt + /Qﬁ(:v, v) — plx, T — ) das), (8.9)

t
where p(z,t) = e 2@ [ |p(x,£)|*d¢. Bearing in mind that [ p(z,7)dz <
z Q

e~ 27T 1pll72(q) for 7 =y or T — v, we obtain by taking the limit as v — 0 in
(8.9) the desired result. O

We turn now to establishing the coming statement with the aid of Proposition

6.2.1 and the above lemma.

Lemma 8.3.2. There exists s; > 0 such that for any s > s1, we have the following

estimate

53”€_Snw|‘%2(cz) + ”Ple_san%%Q) < C(He_sn<a1 — ag)||72(g)n + e (@1 — CD)H%?(Q)
b5 |10 2(0,5) 20,0 (s )

where C' is a positive constant independent of s.

Proof. By applying Proposition 6.2.1 to the solution w, we find a constant C' > 0
such that

53]\6_3”10”%2(@) + H.Ple_san%Q(Q) + S||e_s’7Vw||%z(Q)
< C(He‘S”LwH%g(Q) + s||6_5"01/2(8V¢)1/20,,w||%2(2+)>, s >(8g10)

where Lw(z,t) = (—h(x,t) 4+ 2ix(t)ai(z) - V + x2(¢)ai(z) + B(t)qi (z))w(x, t). Here

163



h(zx,t) is given by the following identity
Wz, t) = =2(H,, + B'q)v — (Hy, (1) + 8" () ) u + filer — @2)(2) + folar — ao)(),
where

fi(x,t) = B"ug + 26 0yuy + B07us,

and

falz,t) = X”< —2iV — x(a1 + az) — 2X/2(@1 +az) — xx"(a; + a2>u2
+2x’< — 21V — x(a1 + a2) — 2xx/ (a1 + ag))atuz
+X< — 21V — x(a; — a2)>8t2u2.

In view of (8.4), we have f; € C°([0,T]; L>*(Q)) for j = 1, 2. Moreover, it is easy
to see that H, + f'qy and H, + "¢, are bounded operators from L*(0,T; H'(2))
into L?(Q). Thus, there exists C' > 0, independent of s, such that we have

s*lle™Mwl Lz q) + I1Pre™ w72 q) + slle™" V|72 q)

< C<||€ “ay = as) | Z2 (g + le™" (@1 = @2) 172y + slle™*"0"2(0,4) 20w |2 sy

> ||e—s”p||L2<QT>+||e-s”vﬂ||p<@>>).

P=U,V,W

Therefore, since VFu( / VEu(-, 1) dr and VFu( / VEw(-,7)dr, for
k= 0,1, we deduce from Lemma 8.3.1 that

s*lle™*Mwl|72q) + [1Pre™"wlZaq) + slle™" Vw72 <0(||65"(a1—a2)||%2<@

He 0 = @)l + slle 6 20) 20,0l + e wlBaigyy + Vel ),
for any s > sg. Thus, by taking s sufficiently large, we obtain

S*lle™w|Zaq) + 1 Pre™wll7s ) < C(He‘sn(al — a)lli2ig) + lle™ (@ — @2) 72

+s He—snel/z(am)l/zaywﬂig(zﬂ).
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This completes the proof of the Lemma. O

8.3.3 The stability estimate

We are now in position to finish the proof of our main result which can be stated

as follows

Theorem 8.3.1. Let M > 0, let x and [ be as in Theorem 8.2.1 and satisfy 8.2.
Let (a;,q;), j = 1,2 be in Sp(ao, qo), where (ag, qo) are the same as above. Then,

there exists n + 1 initial conditions ugy, k =0, ...,n, such that we have

lar = aallzzoy + s = dallizey < C( 3 19,081 = Ou0Fuasliao sz )
k=0

Here C > 0 is a constant depending only on ), T, x and B and w;y, j =1, 2, is

the solution of (8.1) where ugy, is substituted for ug.

Proof. Putting ¢(z,t) = e~*"@y(x,t) and using the fact that ¢(x,0) = 0, we get

o Ny = [* [ oot drar =28 [* [ 2ot a0 drat).

Hence, from the Green formula and (6.8) one can see that

60+ D3y = 28 ( [ [0+ A+ |Vala, 06w, 10w 1) do dt

_ 2%(/05/Qpl¢(x,t)¢(x,t) d:z:dt).
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Therefore, we get from the Cauchy-Schwarz inequality that

T
(-, 5)”%2(9) < 2|PiollZ2 ) lll72 )
< 5732 (33Hes’7w\|iz(@ + HPlesan%Q(Q)>, s> 0.(8.11)

Then, by Lemma 8.3.2, we obtain for all s > s9

T T o —en(- T T o _sn(- T
(-, 5)”%2(9) = 4X’(§)2H€ "2 (ay — as) - Vauo|72gyn + 5/(5)2H‘3 12 (g1 — go)uoll72q)

<O (e ar = a)lEaiye + e~ = @) B + 5 ™ 78Y2(0,) 0,0l ).

Let us now choose the initial conditions ug as follows. Pick w C § such that
w D Q\ V. Then, we choose ug € C§(Q) such that ug(x) = 1 for any r € w.
Taking into account that ¢; — g» and a; — a, vanish in V and that n(z, L) < n(z,t)

for all z € €2, we deduce from the last inequality that

—en(- T _ —en(-.T
Cille it ’2)(611—612)”%2(9) < Cs 3/2(”6 e ’2)(a1—a2)||%2(9)n

—en(- T
e B g = ) ey + 5 1001324652

Here we used the fact that fe=257 and 0,7 are bounded on X*. Next, we select n
initial conditions ugy € C§(Q), for k = 1,...,n, such that ug = zx on w. Then,

we get in a similar way

—en(+. T _ —en(- T
Calle™™ Par = alelfiaey < O™ B ar = ) g
_en(+.T
He By = @)l + 5 19l (B13)

where (a; — ay); denotes the k' component of a; — ay. Summing up (8.12) with

(8.13) for k =1, ..,n, we get for s > s ,

r
2

(- L (- T
Cille™2) (qr = @) 720y + Co D lle™" 2 (a1 — a2)][72(0
=1
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) —en(+ T
<C(n+1) 33/2(’\6877( Nay — a2)“%2(sz)n + lleC2) gy — QQ)HQLQ(Q) +s HanHQLQ(Eﬂ)'
Thus, there exists s3 > 0 such that for s > s3, we have

—en(+ T —en(+ T _
le "t ’2)(Q1—Q2)H%2(Q)+H€ it ’2)(@1—662)\’%2(9)71 <Cs 1/2”8V8t2(u1_uQ)H%Q(Z“')'

a—1

) > e 77 >0, we get the desired result. [

N

Finally, from the inequality e

We finish by giving some Remarks:

8.4 Concluding remarks

e Notice that as in [33] we impose the initial condition u(-, L) = u in (8.1)
att = £ and not ¢ = 0. This allows us to "symmetrize" the solution u to
(8.1) around t = %, and consequently to apply the Carleman estimate of

Proposition 6.2.1 to u over (0, 7).

e The assumption V - a = 0 is purely technical and does not restrict the gener-
ality of Theorem 8.3.1. Indeed, it is well known that the magnetic potential
is not meaningful in physics. The physical relevant quantity is the "two-
form" da = 0 Aa, which coincides with the magnetic field curl « when n = 3.
Actually, given the "magnetic field" b, we can always choose a divergence
free a such that we have b = da. This amounts to substituting a + V4 for a,

where ¢ € H'(Q) is solution to the system

—AYp=V-a in Q,
=0 in 0€).

e Asin [18] we enforce homogeneous Dirichlet-boundary conditions to (8.1).
These homogeneous Dirichlet conditions impose that ¢ be known in the

vicinity V of the boundary 0f). Nevertheless, this condition can be removed
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upon selecting suitable non-homogeneous Dirichlet boundary conditions on

0 as in [3]

Similarly, we can remove the assumption that a be known on V by selecting
the initial conditions ug, for £k = 1,...,n, as in [18][Theorem 1.1]. Nev-
ertheless, the set of initial conditions cannot be defined explicitly, so we
rather stick with the formulation of Theorem 8.3.1 given in this chapter.
Nevertheless, in order to avoid the inadequate expense of the site of this

chapter, we shall not go further into details in this matter.

Evidently, it can be checked that if a; = a, then, the electric potential can
be Lipschitz stably retrieved from one boundary observation of the solution.
This extends the result of Baudouin and Puel [3] to the case of a magnetic
Laplacian.

Similarly, if ¢; = ¢2, we can determine the divergence free magnetic po-
tential for n boundary observations of the solution, which generalises the

result of [18]

It is worth mentionning that the stability estimate of Theorem 8.3.1 deter-
mines n + 1 unknown functions (ay, ...,a,) and ¢ from the knowledge of

n + 1 boundary observations over the time-space (0,7).

We stress out that the conditions (8.2) imposed on the functions y and
g are essential in order to solve the inverse problem under study in this
work. Indeed they allow us to recover the information on a and ¢ from the
knowledge of the "initial" condition of the second order derivative of the

linearized system associated with 8.1 (see the second line in 8.8).
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Conclusion

In this thesis, we were interested in studying the uniqueness and the stability
issues for two types of inverse problems concerning mostly coefficients that are
depending not only on the space variable but also on the time variable. Our
primary focus was to analyse inverse coefficients problems for non-autonomous
hyperbolic equations. We deepened the concept of local non-uniqueness in the
analysis of inverse problems related to time-dependent hyperbolic operators and
we gave a better description of the non-uniquness cloacking area. Moreover,
we developped logarithmic stability estimates for the determinations of some
coefficients appearing in wave equations. The same type of analysis was carried
out for non-autonomous magnetic systems, and we were able to stably recover
some coefficients appearing in magnetic Schrodinger equations.

As perspectives, these results can be extended and generalized to the frame-

work of time-fractional partial differential equations.
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