String diagram rewriting : applications in category and proof theory

par Matteo Acclavio

Thèse de doctorat en Mathématiques

Sous la direction de Yves Lafont.

Le président du jury était Pierre-Louis Curien.

Le jury était composé de Myriam Quatrini, Lorenzo Tortora de Falco, Vito Michele Abrusci, Luigi Santocanale.

Les rapporteurs étaient Willem Heijltjes, Samuel Mimram.

  • Titre traduit

    Réécriture des diagrammes : applications à la théorie des catégories et à la théorie de la démonstration


  • Résumé

    Dans le dernier siècle, nombreux sciences ont enrichi leur syntaxe pour pouvoir modeler des interactions. Entre eux on peut compter l'informatique, la physique quantique, et aussi la biologie et l’économie : toutes ces sciences sont des exemples de domaines qui ont besoin d'une syntaxe et d'une sémantique soit pour la concurrence que pour la séquentialité.Les diagrammes des cordes sont bien adapté à cet effet. Dans leur syntaxe on peut retrouver deux compositions : une composition parallèle et une composition séquentielle, qui peuvent interagir à travers une loi d'interchange. Si on considère cette loi comme une égalité, les diagrammes de cordes sont une syntaxe pour les catégories monoidales strictes, avec une représentation graphique plus intuitive que les formules algébriques traditionnelles.Dans cette thèse, on étude cette syntaxe de dimension 2 et sa sémantique. On considéré la réécriture des diagrammes et on donne des applications de cet méthode :- une preuve détaillée du théorème de cohérence de MacLanes pour les catégories monoidales symétriques basée sur un système de réécriture convergent donnée en arXiv:1606.01722;;- une interprétation des dérivations de preuves avec les diagrammes de preuve pour le fragment MELL de la logique linéaire, qui capture l’équivalence de preuves. On peut vérifier la séquentialité en temps linéaire, c'est à dire vérifier si un diagramme corresponds à une preuve. Cette interprétation est une extension de celle pour le fragment MLL donnée en arXiv:1606.09016 en donnant aussi un résultat de élimination du coupure.


  • Résumé

    In the last century, several sciences enriched their syntax in order to model interactions.Not only computer science and quantum physics, but also biology and economicsare examples of fields requiring syntax and semantics for concurrency as wellas for sequentiality.String diagrams are suitable for that purpose. In that syntax, we have two compositions:the parallel one and the sequential one, which may interact by the interchangerule. If we consider this rule as an equality, string diagrams are a syntax for strictmonoidal categories, with a more intuitive graphical representation than traditionalalgebraic formulas.In this thesis, we study this 2-dimensional syntax and its semantics. We considerdiagram rewriting and we give two applications of those methods:• a detailed proof of Mac Lane’s coherence theorem for symmetric monoidal categoriesbased on convergent diagram rewriting, which is given in arXiv:1606.01722;• an interpretation of proof derivations by string diagrams for the MELL fragmentof linear logic, which captures proof equivalence. We get a linear sequentializabilitytest to verify if a diagram corresponds to a proof . This interpretationextends the one for the MLL fragment given in arXiv:1606.09016,providing also a cut-elimination result.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication

String diagram rewriting : applications in category and proof theory


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université d'Aix-Marseille. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

Cette thèse a donné lieu à une publication

Informations

  • Sous le titre : String diagram rewriting : applications in category and proof theory
  • Détails : 1 vol. (148p.)
  • Annexes : bibliogr. p. 145-148
La version de soutenance de cette thèse existe aussi sous forme papier. Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.