Thèse soutenue

Segmentation automatique des images de tomographie conique pour la radiothérapie de la prostate

FR  |  
EN
Auteur / Autrice : Christine Boydev
Direction : Abdelmalik Taleb-AhmedJean-Philippe Thiran
Type : Thèse de doctorat
Discipline(s) : Automatique. Traitement du signal et des images
Date : Soutenance le 04/12/2015
Etablissement(s) : Valenciennes
Ecole(s) doctorale(s) : École doctorale Sciences pour l'ingénieur (Lille)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'automatique, de mécanique et d'informatique industrielles et humaines (Valenciennes, Nord ; 1994-...) - Laboratoire de traitement des signaux 5 (Lausanne, Suisse)
Communauté d'Universités et Etablissements (ComUE) : Communauté d'universités et d'établissements Lille Nord de France (2009-2013)
Jury : Président / Présidente : Abdeldjalil Ouahabi
Examinateurs / Examinatrices : Abdelmalik Taleb-Ahmed, Jean-Philippe Thiran, Youssef Chahir, David Sarrut, Foued Derraz, David Pasquier, Loïc Dibout
Rapporteur / Rapporteuse : Youssef Chahir, David Sarrut

Résumé

FR  |  
EN

Dans le contexte du traitement du cancer de la prostate, l’utilisation de la tomodensitométrie à faisceau conique (CBCT) pour la radiothérapie guidée par l’image, éventuellement adaptative, présente certaines difficultés en raison du faible contraste et du bruit important dans les images pelviennes. L’objectif principal de cette thèse est d’apporter des contributions méthodologiques pour le recalage automatique entre l’image scanner CT de référence et l’image CBCT acquise le jour du traitement. La première partie de nos contributions concerne le développement d’une stratégie de correction du positionnement du patient à l’aide du recalage rigide (RR) CT/CBCT. Nous avons comparé plusieurs algorithmes entre eux : (a) RR osseux, (b) RR osseux suivi d’un RR local dans une région qui correspond au clinical target volume (CTV) de la prostate dans l’image CT élargie d’une marge allant de 1 à 20 mm. Une analyse statistique complète des résultats quantitatifs et qualitatifs utilisant toute la base de données, composée de 115 images cone beam computed tomography (CBCT) et de 10 images computed tomography (CT) de 10 patients atteints du cancer de la prostate, a été réalisée. Nous avons également défini une nouvelle méthode pratique et automatique pour estimer la distension rectale produite dans le voisinage de la prostate entre l’image CT et l’image CBCT. A l’aide de notre mesure de distension rectale, nous avons évalué l’impact de la distension rectale sur la qualité du RR local et nous avons fourni un moyen de prédire les échecs de recalage. Sur cette base, nous avons élaboré des recommandations concernant l’utilisation du RR automatique pour la localisation de la prostate sur les images CBCT en pratique clinique. La seconde partie de la thèse concerne le développement méthodologique d’une nouvelle méthode combinant le recalage déformable et la segmentation. Pour contourner le problème du faible rapport qualité/bruit dans les images CBCT qui peut induire le processus de recalage en erreur, nous avons imaginé une nouvelle énergie composée de deux termes : un terme de similarité globale (la corrélation croisée normalisée (NCC) a été utilisée, mais tout autre mesure de similarité pourrait être utilisée à la place) et un terme de segmentation qui repose sur une adaptation locale du modèle de l’image homogène par morceaux de Chan-Vese utilisant un contour actif dans l’image CBCT. Notre but principal était d’améliorer la précision du recalage comparé à une énergie constituée de la NCC seule. Notre algorithme de recalage est complètement automatique et accepte comme entrées (1) l’image CT de planification, (2) l’image CBCT du jour et (3) l’image binaire associée à l’image CT et correspondant à l’organe d’intérêt que l’on cherche à segmenter dans l’image CBCT au cours du recalage.