Dimension de Hausdorff des ensembles limites
Auteur / Autrice : | Laurent Dufloux |
Direction : | Jean-François Quint |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 06/10/2015 |
Etablissement(s) : | Sorbonne Paris Cité |
Ecole(s) doctorale(s) : | École doctorale Galilée (Villetaneuse, Seine-Saint-Denis) |
Partenaire(s) de recherche : | établissement de préparation : Université Sorbonne Paris Nord (Bobigny, Villetaneuse, Seine-Saint-Denis ; 1970-....) |
Laboratoire : Laboratoire Analyse, géométrie et applications (LAGA) (Villetaneuse, Seine-Saint-Denis) | |
Jury : | Président / Présidente : Pierre Pansu |
Examinateurs / Examinatrices : Julien Barral, Henry de Thélin, Frédéric Paulin | |
Rapporteur / Rapporteuse : François Ledrappier |
Mots clés
Résumé
Soit G le groupe SO°(1, n) (n ≥ 3) ou PU(1, n) (n ≥ 2) et fixons une décomposition d'Iwasawa G = KAN. Soit ɼ un sous-groupe discret de G, que nous supposons Zariski-dense et de mesure de Bowen-Margulis-Sullivan finie. Lorsque G = SO°(1, n), nous étudions la géométrie de la mesure de Bowen-Margulis-Sullivan le long des sous-groupes fermés connexes de N, en lien avec la dichotomie de Mohammadi-Oh. Nous établissons des résultats déterministes sur la dimension des projections de la mesure de Patterson- Sullivan. Lorsque G = PU(1, n), nous relions la géométrie de la mesure de Bowen- Margulis-Sullivan le long du centre du groupe de Heisenberg au problème du calcul de la dimension de Hausdorff de l'ensemble limite relativement à la distance sphérique au bord. Nous calculons cette dimension pour certains groupes de Schottky.