New approaches for high spatial and temporal resolution nanothermometry : development of hot wire nano heater devices and investigation of thermosensitive materials with fluorescent and spin crossover properties
Auteur / Autrice : | Olena Kraieva |
Direction : | Gábor Molnár, Azzedine Bousseksou |
Type : | Thèse de doctorat |
Discipline(s) : | Nano-physique, nano-composants, nano-mesures |
Date : | Soutenance le 26/10/2015 |
Etablissement(s) : | Toulouse 3 |
Ecole(s) doctorale(s) : | École doctorale Sciences de la Matière (Toulouse) |
Mots clés
Mots clés contrôlés
Résumé
L'objectif de cette thèse était de développer de nouvelles méthodes micro- et nano-thermométriques proposant de hautes résolutions spatiales et temporelles. Dans ce cadre nous nous sommes concentrés sur deux tâches : dans un premier temps, nous avons développé un dispositif de nano-chauffage qui peut aisément servir à la caractérisation thermo-physique de matériaux à l'échelle nanométrique. Dans un second temps, en utilisant cette plate-forme nous avons étudié des matériaux thermosensibles, incluant divers luminophores et des complexes à transition de spin ainsi que leurs mélanges. Les dispositifs de nano-chauffage, basés sur des nanofils chauffés par effet Joule, ont été fabriqués par lithographie électronique conventionnelle. Grâce à leur faible inertie thermique, les dispositifs basés sur des nanofils sont particulièrement intéressants en termes de temps de réponse et de confinement des changements de température induits. La caractérisation thermique de ces éléments de chauffage a été réalisée à l'aide de méthodes électriques et optiques ainsi que de simulations par éléments finis. Nous avons montré expérimentalement que nos chauffages prodiguent des perturbations en température (1 K < DeltaT < 80 K) rapides (< µs) et spatialement localisées (< µm) lorsque stimulées par des impulsions de courant électrique. Les simulations par éléments finis reproduisent ces résultats expérimentaux avec une bonne précision et prouvent ainsi leur intérêt pour le design de tels dispositifs. Les performances thermométriques de matériaux fluorescents, incluant des colorants organiques (Rhodamine B), des nanoparticules inorganiques (PbF2:Er3+/Yb3+, CdSe) et des nanoparticules hybrides organiques/inorganiques ([Fe(Htrz)2(trz)]BF4@SiO2-pyrene), ont ensuite été étudiées. D'une manière générale, leur intérêt pour l'imagerie thermique a été démontré, mais des problèmes de stabilité rendent les mesures quantitatives difficiles avec de tels matériaux. D'un autre côté, nous avons réussi à synthétiser des films de nanoparticules du complexe à transition de spin [Fe(Htrz)2(trz)]BF4 (non-dopé). Ces films qui nous ont permis de suivre les changements de température à l'aide de mesures de réflectivité optique plus robustes. La boucle d'hystérèse thermique dans ce matériau procure un effet de mémoire thermique à long terme dont nous avons usé avec succès pour imager les changements de température très rapides (< µs) et spatialement localisés (< µm) - même après que la chaleur se soit dissipée. Cette méthode originale nous procure une combinaison sans précédent de sensitivité spatio-temporelle dans le champ de la nano-thermométrie aux applications pratiques prometteuses.