Détermination de propriétés magnétiques invariantes de jauge à partir de la densité de courant
Auteur / Autrice : | Nathaniel Raimbault |
Direction : | Arjan Berger, Pina Romaniello |
Type : | Thèse de doctorat |
Discipline(s) : | Physique de la matière |
Date : | Soutenance le 04/11/2015 |
Etablissement(s) : | Toulouse 3 |
Ecole(s) doctorale(s) : | École doctorale Sciences de la Matière (Toulouse) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire de Chimie et Physique Quantiques |
Résumé
De nombreux phénomènes physiques ne peuvent être compris qu'en s'intéressant à la structure électronique. Cette dernière peut être interprétée en termes de propriétés électromagnétiques, chacune de ces propriétés révélant diverses informations sur le système étudié. Il est donc important d'avoir des outils efficaces afin de calculer de telles propriétés. C'est dans ce contexte que cette thèse a été écrite, notre principal objectif ayant été de développer une méthode générale donnant accès à une vaste gamme de propriétés électromagnétiques. Dans la première partie de cette thèse, nous décrivons le socle théorique au sein duquel nous travaillons, en particulier la théorie de la fonctionnelle de la densité de courant dépendante du temps (TDCDFT), qui est une approche qui permet de décrire la réponse du système à un champ magnétique. La seconde partie est consacrée à la méthode que nous avons mise au point pour calculer diverses propriétés magnétiques en préservant l'invariance de jauge. Nous démontrons en particulier qu'en utilisant une simple règle de somme, il est possible de placer les courants diamagnétique et paramagnétique sur un pied d'égalité, évitant par là même les écueils habituels intrinsèques au calcul de propriétés magnétiques, comme la dépendance en l'origine de la jauge du vecteur potentiel. Nous illustrons notre méthode en l'appliquant notamment au calcul de la magnétisabilité et du dichroïsme circulaire, qui est une propriété possédant d'importantes applications pratiques, notamment en biologie. Dans la dernière partie, plus exploratoire, nous tentons d'étendre notre formalisme aux systèmes périodiques. Nous y discutons plusieurs stratégies afin de calculer l'aimantation dans des systèmes décrits par des conditions aux limites périodiques.