Développement d'un outil de gestion de bases de données par une plateforme de simulation multi-agent
Auteur / Autrice : | Minh Thai Truong |
Direction : | Christophe Sibertin-Blanc, Frédéric Amblard, Benoît Gaudou |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 11/02/2015 |
Etablissement(s) : | Toulouse 1 |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, informatique et télécommunications (Toulouse) |
Partenaire(s) de recherche : | Equipe de recherche : Institut de Recherche en Informatique de Toulouse (1995-....) |
Mots clés
Mots clés contrôlés
Mots clés libres
Résumé
Depuis peu, la Modélisation et Simulation par Agents (ABMs) est passée d'une approche dirigée par les modèles à une approche dirigée par les données (Data Driven Approach, DDA). Cette tendance vers l’utilisation des données dans la simulation vise à appliquer les données collectées par les systèmes d’observation à la simulation (Edmonds and Moss, 2005; Hassan, 2009). Dans la DDA, les données empiriques collectées sur les systèmes cibles sont utilisées non seulement pour la simulation des modèles mais aussi pour l’initialisation, la calibration et l’évaluation des résultats issus des modèles de simulation, par exemple, le système d’estimation et de gestion des ressources hydrauliques du bassin Adour-Garonne Français (Gaudou et al., 2013) et l’invasion des rizières du delta du Mékong au Vietnam par les cicadelles brunes (Nguyen et al., 2012d). Cette évolution pose la question du « comment gérer les données empiriques et celles simulées dans de tels systèmes ». Le constat que l’on peut faire est que, si la conception et la simulation actuelles des modèles ont bénéficié des avancées informatiques à travers l’utilisation des plateformes populaires telles que Netlogo (Wilensky, 1999) ou GAMA (Taillandier et al., 2012), ce n'est pas encore le cas de la gestion des données, qui sont encore très souvent gérées de manière ad-hoc. Cette gestion des données dans des Modèles Basés Agents (ABM) est une des limitations actuelles des plateformes de simulation multiagents (SMA). Autrement dit, un tel outil de gestion des données est actuellement requis dans la construction des systèmes de simulation par agents et la gestion des bases de données correspondantes est aussi un problème important de ces systèmes. Dans cette thèse, je propose tout d’abord une structure logique pour la gestion des données dans des plateformes de SMA. La structure proposée qui intègre des solutions de l’Informatique Décisionnelle et des plateformes multi-agents s’appelle CFBM (Combination Framework of Business intelligence and Multi-agent based platform), elle a plusieurs objectifs : (1) modéliser et exécuter des SMAs, (2) gérer les données en entrée et en sortie des simulations, (3) intégrer les données de différentes sources, et (4) analyser les données à grande échelle. Ensuite, le besoin de la gestion des données dans les simulations agents est satisfait par une implémentation de CFBM dans la plateforme GAMA. Cette implémentation présente aussi une architecture logicielle pour combiner entrepôts deIv données et technologies du traitement analytique en ligne (OLAP) dans les systèmes SMAs. Enfin, CFBM est évaluée pour la gestion de données dans la plateforme GAMA à travers le développement de modèles de surveillance des cicadelles brunes (BSMs), où CFBM est utilisé non seulement pour gérer et intégrer les données empiriques collectées depuis le système cible et les résultats de simulation du modèle simulé, mais aussi calibrer et valider ce modèle. L'intérêt de CFBM réside non seulement dans l'amélioration des faiblesses des plateformes de simulation et de modélisation par agents concernant la gestion des données mais permet également de développer des systèmes de simulation complexes portant sur de nombreuses données en entrée et en sortie en utilisant l’approche dirigée par les données.