Thèse soutenue

Evolution de modèles différentiels de systèmes complexes concrets par programmation génétique

FR  |  
EN  |  
PT
Auteur / Autrice : Igor Santos Peretta
Direction : Pierre ColletKeiji Yamanaka
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 21/09/2015
Etablissement(s) : Strasbourg en cotutelle avec Universidade Federal de Uberlândia
Ecole(s) doctorale(s) : École doctorale Mathématiques, sciences de l'information et de l'ingénieur (Strasbourg ; 1997-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (Strasbourg ; 2013-....)
Jury : Président / Présidente : Jose Roberto Camacho
Examinateurs / Examinatrices : Frederico Gadelha Guimaraes, Wesley Pacheco Calixto
Rapporteurs / Rapporteuses : Domingos Alves Rade, Gilberto Arantes Carrijo

Résumé

FR  |  
EN

Un système est défini par les entités et leurs interrelations dans un environnement qui est déterminé par une limite arbitraire. Les systèmes complexes présentent un comportement émergent sans un contrôleur central. Les systèmes concrets désignent ceux qui sont observables dans la réalité. Un modèle nous permet de comprendre, de contrôler et de prédire le comportement du système. Un modèle différentiel à partir d'un système pourrait être compris comme une sorte de loi physique sous-jacent représenté par l'un ou d'un ensemble d'équations différentielles. Ce travail vise à étudier et mettre en œuvre des méthodes pour effectuer la modélisation des systèmes automatisée par l'ordinateur. Cette thèse pourrait être divisée en trois étapes principales, ainsi: (1) le développement d'un solveur numérique automatisé par l'ordinateur pour les équations différentielles linéaires, partielles ou ordinaires, sur la base de la formulation de matrice pour une personnalisation propre de la méthode Ritz-Galerkin; (2) la proposition d'un schème de score d'adaptation qui bénéficie du solveur numérique développé pour guider l'évolution des modèles différentiels pour les systèmes complexes concrets; (3) une implémentation préliminaire d'une application de programmation génétique pour effectuer la modélisation des systèmes automatisée par l'ordinateur. Dans la première étape, il est montré comment le solveur proposé utilise les polynômes de Jacobi orthogonaux comme base complète pour la méthode de Galerkin et comment le solveur traite des conditions auxiliaires de plusieurs types. Solutions à approximations polynomiales sont ensuite réalisés pour plusieurs types des équations différentielles partielles linéaires, y compris les problèmes hyperboliques, paraboliques et elliptiques. Dans la deuxième étape, le schème de score d'adaptation proposé est conçu pour exploiter certaines caractéristiques du solveur proposé et d'effectuer l'approximation polynômiale par morceaux afin d'évaluer les individus différentiels à partir d'une population fournie par l'algorithme évolutionnaire. Enfin, une mise en œuvre préliminaire d'une application GP est présentée et certaines questions sont discutées afin de permettre une meilleure compréhension de la modélisation des systèmes automatisée par l'ordinateur. Indications pour certains sujets prometteurs pour la continuation de futures recherches sont également abordées dans ce travail, y compris la façon d'étendre ce travail à certaines classes d'équations différentielles partielles non-linéaires.