Thèse soutenue

Estimation et sélection pour les modèles additifs et application à la prévision de la consommation électrique

FR  |  
EN
Auteur / Autrice : Vincent Thouvenot
Direction : Jean-Michel Poggi
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées
Date : Soutenance le 17/12/2015
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Laboratoire : Laboratoire de mathématiques d'Orsay (1998-....)
Jury : Président / Présidente : Pascal Massart
Examinateurs / Examinatrices : Jean-Michel Poggi, Pascal Massart, Irène Gijbels, Pierre Patrick Pinson, Anestis Antoniadis, Éric Matzner-Løber, Yannig Goude
Rapporteur / Rapporteuse : Irène Gijbels, Pierre Patrick Pinson

Résumé

FR  |  
EN

L'électricité ne se stockant pas aisément, EDF a besoin d'outils de prévision de consommation et de production efficaces. Le développement de nouvelles méthodes automatiques de sélection et d'estimation de modèles de prévision est nécessaire. En effet, grâce au développement de nouvelles technologies, EDF peut étudier les mailles locales du réseau électrique, ce qui amène à un nombre important de séries chronologiques à étudier. De plus, avec les changements d'habitude de consommation et la crise économique, la consommation électrique en France évolue. Pour cette prévision, nous adoptons ici une méthode semi-paramétrique à base de modèles additifs. L'objectif de ce travail est de présenter des procédures automatiques de sélection et d'estimation de composantes d'un modèle additif avec des estimateurs en plusieurs étapes. Nous utilisons du Group LASSO, qui est, sous certaines conditions, consistant en sélection, et des P-Splines, qui sont consistantes en estimation. Nos résultats théoriques de consistance en sélection et en estimation sont obtenus sans nécessiter l'hypothèse classique que les normes des composantes non nulles du modèle additif soient bornées par une constante non nulle. En effet, nous autorisons cette norme à pouvoir converger vers 0 à une certaine vitesse. Les procédures sont illustrées sur des applications pratiques de prévision de consommation électrique nationale et locale.Mots-clés: Group LASSO, Estimateurs en plusieurs étapes, Modèle Additif, Prévision de charge électrique, P-Splines, Sélection de variables