Thèse soutenue

Étude par Time Resolved Microwave Conductivity de photocatalyseurs pour la dépollution de l’eau

FR  |  
EN
Auteur / Autrice : Alexandre Hérissan
Direction : Christophe Colbeau-Justin
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 16/11/2015
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences chimiques : molécules, matériaux, instrumentation et biosystèmes (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : Université Paris-Sud (1970-2019)
Laboratoire : Institut de chimie physique (Orsay, Essonne ; 2000-....)
Jury : Président / Présidente : Isabelle Lampre
Examinateurs / Examinatrices : Christophe Colbeau-Justin, Isabelle Lampre, Andrei Kanaev, Philippe Barboux, Lauriane, d' Alençon, Fabrice Goubard, Sophie Cassaignon
Rapporteur / Rapporteuse : Andrei Kanaev, Philippe Barboux

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

La photocatalyse se base sur l’excitation d’un semi-conducteur par des photons d’énergie supérieure ou égale à son gap, générant des paires électron-trous. Celles-ci sont très réactives et susceptibles de réagir à l’interface pour réaliser par exemple l’oxydation totale d’un composé organique. Cette méthode peut être appliquée sur des eaux usées pour éliminer totalement les polluants organiques qui y sont présents. Dans la perspective d’une utilisation du soleil comme source de lumière, cette méthode peut s’avérer très économique et écologique pour le traitement de l’eau.L’interaction lumière-semi-conducteur et la dynamique des porteurs de charge sont des processus physico-chimiques primordiaux pour la photocatalyse, et il est nécessaire de bien les comprendre pour maîtriser le procédé et développer des matériaux plus efficaces. La Time Resolved Microwave Conductivity (TRMC) est une technique qui se base sur la réflexion des micro-ondes sur un semi-conducteur excité qui est directement reliée avec le nombre de porteurs de charge photo-générés. Il s’agit d’un moyen de sonder en temps réel la dynamique des porteurs de charge dans les semi-conducteurs.Ce travail s’inscrit dans le cadre du projet ANR PhotoNorm. Il consiste en une étude par TRMC de dioxyde de titane TiO2 utilisé pour la dépollution de l’eau par photocatalyse. Une partie de cette étude concerne la caractérisation des propriétés opto-électroniques des matériaux, pour lesquels la dynamique des porteurs de charge sera comparée à l’activité photocatalytique. L’effet bénéfique en photocatalyse de la déposition de nanoparticules d'or, d'argent ou bimetallique or-cuivre sur des TiO2 commerciaux sera relié à une capture d’électrons libres observée en TRMC. L’effet bénéfique sur la photocatalyse en lumière visible a été relié à une injection d’électrons dans le TiO2 par des nanoparticules de bismuth. L’autre partie de ce travail consiste en une étude plus fondamentale de la dynamique des porteurs de charge dans des TiO2 commerciaux ou synthétisés dans le cadre du projet PhotoNorm. Il y sera montré l’importance de la longueur d’onde et de l’intensité d’excitation du matériau sur le rendement de génération de porteurs de charge. L’importance des effets de surface et de l’environnement seront aussi mis en évidence de plusieurs façons. La première consiste simplement en un traitement chimique de la surface (lavage), qui peut avoir une grande influence à la fois sur la dynamique des porteurs de charge et sur la photocatalyse, sûrement en lien avec la présence d’impuretés de surface. La seconde consiste à imprégner le TiO2 par des colorants organiques présentant une forte absorption en lumière visible. Les mesures de TRMC sur ces systèmes permettent de mettre en évidence l’interaction entre le semi-conducteur et les molécules extérieures adsorbées à sa surface, notamment l’injection d’électrons du colorant excité vers le semi-conducteur, mais aussi des effets de recombinaison accrus. La troisième méthode consiste à modifier l’atmosphère de travail en TRMC. Il y est observé notamment l’importance de l’oxygène sur la dynamique des porteurs de charge, et notamment les effets de captures d’électrons, phénomènes qui entrent en jeu dans le processus de photocatalyse.Au final, la TRMC s’avère être un bon moyen d’étude de la durée de vie des porteurs de charge dans les semi-conducteurs, qui peut permettre de mieux comprendre les processus fondamentaux associés à la photocatalyse.