Sur les relations entre la topologie de contact et la dynamique de champs de Reeb
Auteur / Autrice : | Marcelo Ribeiro de Resende Alves |
Direction : | Frédéric Bourgeois |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques fondamentales |
Date : | Soutenance le 19/11/2015 |
Etablissement(s) : | Université Paris-Saclay (ComUE) |
Ecole(s) doctorale(s) : | École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....) |
Partenaire(s) de recherche : | établissement opérateur d'inscription : Université Paris-Sud (1970-2019) |
Laboratoire : Laboratoire de mathématiques d'Orsay (1998-....) | |
Jury : | Président / Présidente : Alexandru Oancea |
Examinateurs / Examinatrices : Frédéric Bourgeois, Alexandru Oancea, Vincent Colin, Jérôme Buzzi, Chris Wendl | |
Rapporteur / Rapporteuse : Vincent Colin, Alberto Abbondandolo |
Mots clés
Résumé
L'objectif de cette thèse est d'investiguer les relations entre les propriétés topologiques d'une variété de contact et la dynamique des flots de Reeb dans la variété de contact en question. Dans la première partie de la thèse, nous établissons une relation entre la croissance de l’homologie de contact cylindrique d'une variété de contact et l'entropie topologique des flots de Reeb dans cette variété de contact. Nous utilisons ce résultat dans les chapitres 8 et 9 pour montrer l'existence d'un grand nombre des nouvelles variétés de contact de dimension 3 dans lesquelles tous les flots de Reeb ont entropie topologique positive. Dans le chapitre 10, nous prouvons un résultat obtenu en collaboration avec Chris Wendl qui donne une obstruction dynamique pour qu'une variété de contact de dimension 3 soit planaire. Cette obstruction est utilisée pour montrer que, si une variété de contact de dimension 3 possède un flot de Reeb qui est uniformément hyperbolique (Anosov) avec variétés invariantes traversalement orientables, alors cette variété de contact n'est pas planaire. Dans le chapitre 11, nous étudions l'entropie topologique des flots de Reeb dans les fibrés unitaires des surfaces de genre plus grand que 1. Nous montrons que la restriction de chaque flot de Reeb en au ensemble limite de presque toute fibre unitaire a une entropie topologique positive.