Thèse soutenue

Algorithmes d’estimation et de détection en contexte hétérogène rang faible

FR  |  
EN
Auteur / Autrice : Arnaud Breloy
Direction : Guillaume Ginolhac
Type : Thèse de doctorat
Discipline(s) : Traitement du signal et des images
Date : Soutenance le 23/11/2015
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences et technologies de l'information et de la communication (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Systèmes et applications des technologies de l'information et de l'énergie (Gif-sur-Yvette, Essonne ; 2002-....) - Systèmes et Applications des Technologies de l'Information et de l'Energie
établissement opérateur d'inscription : École normale supérieure Paris-Saclay (Gif-sur-Yvette, Essonne ; 1912-....)
Jury : Président / Présidente : Pierre Comon
Examinateurs / Examinatrices : Guillaume Ginolhac, Pierre Comon, Olivier Besson, Pascal Chevalier, Frédéric Pascal, Philippe Forster, Chin yuan Chong
Rapporteurs / Rapporteuses : Olivier Besson, Pascal Chevalier

Résumé

FR  |  
EN

Une des finalités du traitement d’antenne est la détection et la localisation de cibles en milieu bruité. Dans la plupart des cas pratiques, comme par exemple le RADAR ou le SONAR actif, il faut estimer dans un premier temps les propriétés statistiques du bruit, et plus précisément sa matrice de covariance ; on dispose à cette fin de données secondaires supposées identiquement distribuées. Dans ce contexte, les hypothèses suivantes sont généralement formulées : bruit gaussien, données secondaires ne contenant que du bruit, et bien sûr matériels fonctionnant parfaitement. Il est toutefois connu aujourd’hui que le bruit en RADAR est de nature impulsive et que l’hypothèse Gaussienne est parfois mal adaptée. C’est pourquoi, depuis quelques années, le bruit et en particulier le fouillis de sol est modélisé par des processus elliptiques, et principalement des Spherically Invariant Random Vectors (SIRV). Dans ce nouveau cadre, la Sample Covariance Matrix (SCM) estimant classiquement la matrice de covariance du bruit entraîne des pertes de performances très importantes des détecteurs / estimateurs. Dans ce contexte non-gaussien, d’autres estimateurs de la matrice de covariance mieux adaptés à cette statistique du bruit ont été développés : la Matrice du Point Fixe (MPF) et les M-estimateurs.Parallèlement, dans un cadre où le bruit se décompose sous la forme d’une somme d’un fouillis rang faible et d’un bruit blanc, la matrice de covariance totale est structurée sous la forme rang faible plus identité. Cette information peut être utilisée dans le processus d'estimation afin de réduire le nombre de données nécessaires. De plus, il aussi est possible d'utiliser le projecteur orthogonal au sous espace fouillis à la place de la matrice de covariance ce qui nécessite moins de données secondaires et d’être aussi plus robuste aux données aberrantes. On calcule classiquement ce projecteur à partir d'un estimateur de la matrice de covariance. Néanmoins l'état de l'art ne présente pas d'estimateurs à la fois être robustes aux distributions hétérogènes, et rendant compte de la structure rang faible des données. C'est pourquoi ces travaux se focalisent sur le développement de nouveaux estimateurs (de covariance et de sous espace), directement adaptés au contexte considéré. Les contributions de cette thèse s'orientent donc autour de trois axes :- Nous présenterons tout d'abord un modèle statistique précis : celui de sources hétérogènes ayant une covariance rang faible noyées dans un bruit blanc gaussien. Ce modèle et est, par exemple, fortement justifié pour des applications de type radar. Il à cependant peu été étudié pour la problématique d'estimation de matrice de covariance. Nous dériverons donc l'expression du maximum de vraisemblance de la matrice de covariance pour ce contexte. Cette expression n'étant pas une forme close, nous développerons différents algorithmes pour tenter de l'atteindre efficacement.- Nous développons de nouveaux estimateurs directs de projecteur sur le sous espace fouillis, ne nécessitant pas un estimé de la matrice de covariance intermédiaire, adaptés au contexte considéré.- Nous étudierons les performances des estimateurs proposés et de l'état de l'art sur une application de Space Time Adaptative Processing (STAP) pour radar aéroporté, au travers de simulations et de données réelles.