Thèse soutenue

Modélisation et étude de l’évaporation et de la combustion de gouttes dans les moteurs à propergol solide par une approche eulérienne Multi-Fluide

FR  |  
EN
Auteur / Autrice : Alaric Sibra
Direction : Marc MassotFrédérique Laurent
Type : Thèse de doctorat
Discipline(s) : Énergétique
Date : Soutenance le 27/11/2015
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences mécaniques et énergétiques, matériaux et géosciences (Gif-sur-Yvette, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : CentraleSupélec (2015-....)
Laboratoire : Laboratoire d'énergétique moléculaire et macroscopique, combustion (Gif-sur-Yvette, Essonne)
Jury : Président / Présidente : Vincent Giovangigli
Examinateurs / Examinatrices : Marc Massot, Frédérique Laurent, Vincent Giovangigli, Joël Dupays, Alain Merlen
Rapporteurs / Rapporteuses : Eric Daniel, Julien Reveillon

Résumé

FR  |  
EN

En propulsion solide, l'ajout de particules d'aluminium dans le propergol améliore de façon significative les performances du moteur grâce à une augmentation sensible de la température de chambre. La présence de gouttes d'aluminium et de résidus d'alumine de différentes tailles et en quantité importante a un impact notoire sur le fonctionnement du moteur. Dans cette optique, nous souhaitons obtenir une meilleure prévision de la stabilité de fonctionnement en cas de déclenchement d'instabilités d'origine aéroacoustique ou thermoacoustique. Nous visons des calculs plus précis de l'étendue de la zone de combustion, de la chaleur dégagée par la combustion distribuée des gouttes et de la distribution en taille des résidus. Nos efforts ont porté sur la modélisation des échanges entre la phase gazeuse et cette phase dispersée composée de gouttes de nature et de taille très diverses. Le paramètre taille pilotant la dynamique du spray et le couplage avec le gaz, le suivi précis des changements de taille est un enjeu majeur.Dans cette contribution, nous avons choisi une approche cinétique pour la description des sprays polydisperses. L'équation cinétique de Williams-Boltzmann utilisée pour suivre l'évolution des propriétés du spray est résolue par une approche eulérienne. Les méthodes Multi-Fluide (MF) traitent naturellement les changements de taille tels que l'évaporation et la coalescence. Ces méthodes reposent sur une intégration continue de la variable taille sur des intervalles fixes appelés sections sur lesquels nous pouvons dériver des systèmes d'équations de conservation. Chaque système est vu comme un fluide qui est en couplage fort avec la phase gazeuse via des termes sources.Nous avons travaillé sur une méthode MF à deux moments en taille basée sur une famille de fonctions de forme polynomiale pour reconstruire la distribution en taille au sein des sections. Cette approche d'ordre deux en temps et en espace s'avère performante car elle décrit avec précision l'évolution de la distribution avec un nombre modéré de sections. Un travail original a été mené afin d'étendre l'approche MF à des gouttes bicomposants. Cette méthode ouvre la voie à des modèles de combustion des gouttes d'aluminium plus représentatifs. Dans le contexte des simulations instationnaires, nous avons porté une attention particulière à l'emploi d'une stratégie numérique robuste et précise pour le couplage entre les phases modélisées par une approche Euler-Euler. Nous montrons qu'une méthode de splitting séparant le traitement du transport des phases gazeuse/dispersée de celui des termes sources est particulièrement adaptée pour la résolution d'un problème multi-échelle spatial et temporel. Dans la mesure où les conditions de réalisabilité sur les moments en taille des méthodes MF ne sont pas garanties avec des méthodes d'intégration traditionnelles, nous avons développé des schémas innovants pour l'intégration des termes sources. Les travaux proposés dans cette contribution répond à deux exigences : 1- un ratio coût/précision attractif pour des simulations industrielles 2- une facilité d'implémentation des méthodes et une modularité assurant la pérennisation des codes industriels. Ces développements ont d'abord été vérifiés à l'aide d'un code ad hoc ; des cas test d'étude d'acoustique diphasique linéaire ont notamment souligné la pertinence de la technique de splitting pour restituer avec précision les interactions spray-acoustique. Les nouvelles méthodes ont ensuite été implémentées et validées au sein du code multi-physique CEDRE développé à l'ONERA. Des calculs de propulsion solide sur des configurations moteur réalistes ont finalement mis en évidence le niveau de maturité atteint par les méthodes eulériennes pour décrire avec fidélité la dynamique des sprays polydisperses. Les résultats de ces simulations ont mis en avant la sensibilité des niveaux d'instabilités en fonction de la distribution en taille des gouttes d'aluminium et des résidus.