Thèse soutenue

Contribution à l’étude de la relaxation thermique dans des nanostructures d’intérêt biologique
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Jordane Soussi
Direction : Sebastian VolzYann Chalopin
Type : Thèse de doctorat
Discipline(s) : Énergétique
Date : Soutenance le 10/12/2015
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences mécaniques et énergétiques, matériaux et géosciences (Gif-sur-Yvette, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : CentraleSupélec (2015-....)
Laboratoire : Laboratoire d'énergétique moléculaire et macroscopique, combustion (Gif-sur-Yvette, Essonne)
Jury : Président / Présidente : Bruno Le Pioufle
Examinateurs / Examinatrices : Sebastian Volz, Yann Chalopin, Bruno Le Pioufle, Robert Pansu
Rapporteurs / Rapporteuses : Davide Donadio, Florence Gazeau

Résumé

FR  |  
EN

En médecine, les nanotechnologies permettent le développement de nouvelles techniques de soin comme l’hyperthermie local ou la délivrance ciblée de médicaments. Ces applications impliquent de nouveaux défis scientifiques concernant la conception de nanosystems et les propriétés de leur environnement biologique. Dans cette thèse, nous avons analysé plusieurs aspects de la relaxation thermique de tels systèmes. Nous avons mise en œuvre la fois des simulations de Dynamique Moléculaire et des mesures expérimentales de microscopie d’imagerie en temps de vie de fluorescence. Nous présentons une étude numérique du transfert thermique depuis une nanoparticule en solution aqueuse et montrons qu’attacher un polymère à sa surface permet de réduire la résistance thermique entre la particule et son environnement. Nous avons modélisé des bicouches lipidiques pour calculer leurs propriétés diélectriques et leur viscosité a été étudiée par microscopie de fluorescence. Ces expériences sont réalisées sur des membranes suspendues et des vésicules unilamellaires géantes et démontrent que la viscosité des bicouches lipidiques diminue avec la température et l’application d’une tension transmembranaire induisant un changement de structure.