Thèse soutenue

Optimisation multiphysique d'une chaîne d'actionnement pour application automobile

FR  |  
EN
Auteur / Autrice : Florent Robert
Direction : Philippe Dessante
Type : Thèse de doctorat
Discipline(s) : Génie électrique
Date : Soutenance le 10/12/2015
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Electrical, optical, bio : physics and engineering (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : CentraleSupélec (2015-....)
Laboratoire : Laboratoire Génie électrique et électronique de Paris (Gif-sur-Yvette, Essonne ; 1998-....)
Jury : Président / Présidente : Yann Le Bihan
Examinateurs / Examinatrices : Philippe Dessante, Yann Le Bihan, Michel Hecquet, Filipe Vinci dos Santos, Mohamed Bensetti, Laurent Dufour
Rapporteurs / Rapporteuses : Françoise Paladian, Flavio Canavero

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Nos travaux portent sur l’étude du dimensionnement d’une chaîne d’actionnement au moyen d’une optimisation multi-physique. L’approche est de type « système », puisqu’il s’agit d’étudier l’association de filtres électroniques, d’un convertisseur de puissance DC-DC, d’un moteur à courant continu et d’une commande, en prenant en compte la transformation électromécanique de l’énergie ainsi que les comportements thermiques du système. L’intégration de la problématique de compatibilité électromagnétique (CEM) conduite est aussi abordée. Le travail consiste tout d’abord à modéliser chacune des physiques à prendre en compte pour chacun des sous-systèmes, puis de coupler les modèles obtenus afin de pouvoir mener des optimisations. L’algorithme d’optimisation utilisé est de type évolutionnaire. La démarche est appliquée sur le cas industriel d’une vanne EGR (Exhaust Gas Recirculation). Dans ce cadre, l’objectif est de minimiser l’encombrement du système tout en s’assurant que ses performances sont cohérentes avec le cahier des charges ainsi que les contraintes thermiques et CEM. Au-delà de l’application, la démarche permet de s’interroger sur les différents niveaux de modélisation et les moyens de couplages adéquats des modèles, dans le cadre d’une optimisation coûteuse en temps de calcul.