Quelques contributions à l'estimation des modèles définis par des équations estimantes conditionnelles
Auteur / Autrice : | Weiyu Li |
Direction : | Valentin Patilea |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques et applications |
Date : | Soutenance le 15/07/2015 |
Etablissement(s) : | Rennes 1 |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, télécommunications, informatique, signal, systèmes, électronique (Rennes) |
Partenaire(s) de recherche : | Laboratoire : Institut de recherche mathématique (Rennes ; 1996-....) |
Mots clés
Mots clés contrôlés
Résumé
Dans cette thèse, nous étudions des modèles définis par des équations de moments conditionnels. Une grande partie de modèles statistiques (régressions, régressions quantiles, modèles de transformations, modèles à variables instrumentales, etc.) peuvent se définir sous cette forme. Nous nous intéressons au cas des modèles avec un paramètre à estimer de dimension finie, ainsi qu’au cas des modèles semi paramétriques nécessitant l’estimation d’un paramètre de dimension finie et d’un paramètre de dimension infinie. Dans la classe des modèles semi paramétriques étudiés, nous nous concentrons sur les modèles à direction révélatrice unique qui réalisent un compromis entre une modélisation paramétrique simple et précise, mais trop rigide et donc exposée à une erreur de modèle, et l’estimation non paramétrique, très flexible mais souffrant du fléau de la dimension. En particulier, nous étudions ces modèles semi paramétriques en présence de censure aléatoire. Le fil conducteur de notre étude est un contraste sous la forme d’une U-statistique, qui permet d’estimer les paramètres inconnus dans des modèles généraux.