Thèse soutenue

Ordonnancement d'activité sous contraintes temporelles et spatiales, pour le peuplement d'environnements virtuels

FR  |  
EN
Auteur / Autrice : Carl-Johan Jørgensen
Direction : Kadi BouatouchFabrice Lamarche
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 17/07/2015
Etablissement(s) : Rennes 1
Ecole(s) doctorale(s) : École doctorale Mathématiques, télécommunications, informatique, signal, systèmes, électronique (Rennes)
Partenaire(s) de recherche : PRES : Université européenne de Bretagne (2007-2016)
Laboratoire : Institut de recherche en informatique et systèmes aléatoires (Rennes) - Inria Rennes – Bretagne Atlantique - Mimetic

Résumé

FR  |  
EN

Les modèles de simulation de foules visent généralement à produire des foules visuellement crédibles avec l'intention d'insuffler de la vie à des environnements virtuels. Notre travail se concentre sur la génération de comportements statistiquement cohérents qui peuvent être utilisés pour piloter des modèles de simulation de foules sur de longues périodes de temps, jusqu'à plusieurs jours. Dans les foules réelles, les comportements des individus dépendent principalement de l'activité qu'ils ont l'intention d'effectuer. La façon d’ordonnancer cette activité repose sur l'interaction étroite qui existe entre l'environnement, les contraintes spatiales et temporelles associées à l'activité et les caractéristiques personnelles des individus. Par rapport à l'état de l'art, notre modèle gérer mieux cette interaction. Nos principales contributions se situent dans le domaine de l'ordonnancement d'activités et de la planification de chemin. Dans un premier temps, nous proposons un processus d'ordonnancement d'activités individuelles et son extension aux activités coopératives. Basé sur les descriptions de l'environnement, des activités désirées et des caractéristiques des agents, ces processus génèrent une séquence de la tâche pour chaque agent. Des lieux où ces tâches doivent être effectuées sont sélectionnés et un timing relâché est produit. Cet ordonnancement est compatible avec les contraintes spatiales et temporelles liées à l'environnement et à l'activité prévue par l'agent et par d'autres agents en coopération. Il prend également en compte les caractéristiques personnelles des agents, induisant de la diversité dans les ordonnancements produits. Nous montrons que notre modèle produit des comportements statistiquement cohérents avec ceux produits par des personnes dans les mêmes situations. Dans un second temps, nous proposons un processus de planification de chemins hiérarchique. Il repose sur un processus d'analyse de l'environnement automatique qui produit une représentation hiérarchique sémantiquement cohérente des villes virtuelles. La nature hiérarchique de cette représentation est utilisée pour modéliser différents niveaux de prise de décisions. Un chemin grossier est d'abord calculé, puis raffiné pendant la navigation lorsque de l'information pertinente est disponible, permettant ainsi à l'agent d'adapter son chemin à des événements inattendus. Le modèle proposé gère des décisions rationnelles à long terme guidant la navigation des agents dans les villes virtuelles. Il prend en compte la forte relation entre le temps, l'espace et l'activité pour produire les comportements des agents plus crédibles de. Il peut être utilisé pour peupler facilement des villes virtuelles avec des foules au sein desquelles des phénomènes observables émergent de l'activité individuelle.