Thèse soutenue

Prédiction de second ordre et résidu par quantification vectorielle pour la compression vidéo

FR  |  
EN
Auteur / Autrice : Bihong Huang
Direction : Christine Guillemot
Type : Thèse de doctorat
Discipline(s) : Traitement du signal et télécommunications
Date : Soutenance le 08/07/2015
Etablissement(s) : Rennes 1
Ecole(s) doctorale(s) : École doctorale Mathématiques, télécommunications, informatique, signal, systèmes, électronique (Rennes)
Partenaire(s) de recherche : Laboratoire : Institut de recherche en informatique et systèmes aléatoires (Rennes) - Inria Rennes – Bretagne Atlantique - Sirocco
PRES : Université européenne de Bretagne (2007-2016)

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

La compression vidéo est une étape cruciale pour une grande partie des applications de télécommunication. Depuis l'avènement de la norme H.261/MPEG-2, un nouveau standard de compression vidéo est produit tous les 10 ans environ, avec un gain en compression de 50% par rapport à la précédente. L'objectif de la thèse est d'obtenir des gains en compression par rapport à la dernière norme de codage vidéo HEVC. Dans cette thèse, nous proposons trois approches pour améliorer la compression vidéo en exploitant les corrélations du résidu de prédiction intra. Une première approche basée sur l'utilisation de résidus précédemment décodés montre que, si des gains sont théoriquement possibles, le surcoût de la signalisation les réduit pratiquement à néant. Une deuxième approche basée sur la quantification vectorielle mode-dépendent (MDVQ) du résidu préalablement à l'étape classique transformée-quantification scalaire, permet d'obtenir des gains substantiels. Nous montrons que cette approche est réaliste, car les dictionnaires sont indépendants du QP et de petite taille. Enfin, une troisième approche propose de rendre adaptatif les dictionnaires utilisés en MDVQ. Un gain substantiel est apporté par l'adaptivité, surtout lorsque le contenu vidéo est atypique, tandis que la complexité de décodage reste bien contenue. Au final on obtient un compromis gain-complexité compatible avec une soumission en normalisation.