Thèse soutenue

La physique du colmatage : de la particule colloïdale au bouchon

FR  |  
EN
Auteur / Autrice : Benjamin Dersoir
Direction : Luc OgerHervé Tabuteau
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 24/03/2015
Etablissement(s) : Rennes 1
Ecole(s) doctorale(s) : École doctorale Sciences de la matière (Rennes ; 1996-2016)
Partenaire(s) de recherche : Laboratoire : Institut de physique (Rennes) - IPR
PRES : Université européenne de Bretagne (2007-2016)

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

La formation de bouchon est un problème récurrent et presque inévitable lors de l'écoulement de solutions diluées dans des milieux poreux. Actuellement, on ne sait pas comment, à partir du processus initial de déposition de particules à la paroi, ces dernières s'accumulent dans le pore et finissent par le boucher. L'idée générale de ce travail est d'étudier la dynamique de formation de bouchon lors l'écoulement de particules colloïdales au sein de matériaux poreux modèles (canaux microfluidiques). Nous décrivons dans un premier temps, les différents phénomènes physiques impliqués dans la capture de particules et dans l'agrégation colloïdale. Nous faisons également une brève présentation des différentes techniques d'imagerie utilisées dans ce travail et des méthodes de préparation des solutions colloïdales ainsi que des dispositifs microfluidiques. Le troisième chapitre est consacré à l'étude du processus de colmatage en situation de fort confinement (2d). Nous avons identifié deux régimes de colmatage (régime de ''ligne'' et ''d'invasion''). Nous avons ensuite déterminé les processus de capture de particules à l'origine de ces deux régimes, à l'échelle de la particule. Nous avons montré que le processus de colmatage correspond à un phénomène d'auto-filtration. Alors que les premières particules sont capturées de manière « directe » par les parois du pore, la déposition de toutes les suivantes résulte systématiquement d'une interaction avec ces dernières. Finalement, nous avons abordé le colmatage de pore 3d, dont la hauteur est égale à la largeur du pore. Nous avons fourni une description détaillée de l'ensemble du processus de colmatage, à l'échelle du pore et de la particule. Nous avons déterminé les conditions d'adhésion des premières particules à la paroi du pore, les propriétés de croissance des agrégats, ainsi que la manière dont ils se connectent pour obstruer le pore. Nous avons montré que cette dynamique de formation conduit à une structure finale de bouchon très ténue.