Thèse soutenue

Méthodologie de diagnostic des batteries Li-ion par la mesure des bruits électrochimiques
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Florian Maillard
Direction : Sergueï MartemianovLudovic MadierAnthony Thomas
Type : Thèse de doctorat
Discipline(s) : Sciences de l'ingénieur
Date : Soutenance le 09/12/2015
Etablissement(s) : Poitiers
Ecole(s) doctorale(s) : École doctorale Sciences et ingénierie des matériaux, mécanique, énergétique et aéronautique (Poitiers ; 2009-2018)
Partenaire(s) de recherche : Laboratoire : Pôle poitevin de recherche pour l'ingénieur en mécanique, matériaux et énergétique - PPRIMME (Poitiers)
faculte : École nationale supérieure d'ingénieurs (Poitiers ; 1984-....)
Jury : Président / Présidente : Pierre Millet
Examinateurs / Examinatrices : Sergueï Martemianov, Ludovic Madier, Anthony Thomas, Mathieu Bervas, Aymeric Bonnaud
Rapporteurs / Rapporteuses : Yann Bultel, Belkacem Ould Bouamama

Résumé

FR  |  
EN

Ce travail concerne les fluctuations électrochimiques de tension des batteries Li-ion, communément appelées bruit électrochimique.L'idée est d'utiliser la mesure de bruit électrochimique en fonctionnement pour générer, via du traitement de signal, des descripteurs statistiques permettant de caractériser le SOH (état de santé). L'objectif consiste à développer une méthode innovante de diagnostic non intrusif permettant de compléter les méthodes traditionnelles (impédancemétrie,...).DCNS St-Tropez a participé et compte développer cette approche dans le cadre d'une application d'alimentation d'armes sous-marines, qui nécessite un très haut niveau de sécurité et de fiabilité. La mesure de bruit des batteries Li-ion est difficile à cause des très bas niveaux du signal et nécessite des appareils performants. Nous avons installé une chaîne de mesure permettant d'acquérir les fluctuations de tension en décharge. Puis nous avons extrait le bruit grâce à une méthode numérique robuste. La tension de décharge est non-stationnaire, ce qui nécessite un traitement spécifique. L'analyse à court-terme par les moments d'ordre 2, 3 et 4 montre qu'il y a trois zones dans lesquelles les bruits sont complètement différents. Le milieu de la décharge présente une répartition uniforme caractérisé par une forme en V (minimum à SOC = 55%), des structures cohérentes tempo-fréquentielles sur les bords révélées par l'analyse en ondelettes. Notre modèle permet de trouver les sources de bruit prépondérantes et d'identifier les paramètres responsables du bruit électrochimique. Les applications futures concernent la caractérisation du vieillissement et la qualité de fabrication des batteries.