Thèse soutenue

Contributions mathématiques aux calculs de structures électroniques

FR  |  
EN
Auteur / Autrice : David Gontier
Direction : Eric Cancès
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 28/09/2015
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Centre d'enseignement et de recherche en mathématiques et calcul scientifique (Champs-sur-Marne, Seine-et-Marne) - CERMICS
Jury : Président / Présidente : Yvon Maday
Examinateurs / Examinatrices : Eric Cancès, Xavier ‎Blanc‎, Clotilde Fermanian-Kammerer, François Jollet, Gabriel Stoltz
Rapporteurs / Rapporteuses : Carlos Garcia Cervera, Eric Séré

Résumé

FR  |  
EN

Cette thèse comprend trois sujets différents, tous en rapport à des problèmes de structures électroniques. Ces trois sujets sont présentés dans trois parties indépendantes.Cette thèse commence par une introduction générale présentant les problématiques et les principaux résultats.La première partie traite de la théorie de la fonctionnelle de la densité lorsqu'elle est appliquée aux modèles d'électrons avec spins polarisés. Cette partie est divisée en deux chapitres. Dans le premier de ces chapitres, nous introduisons la notion de N-représentabilité, et nous caractérisons les ensembles de matrices de densité de spin représentables. Dans le second chapitre, nous montrons comment traiter mathématiquement le terme de Zeeman qui apparaît dans les modèles comprenant une polarisation de spin. Le résultat d'existence qui est démontré dans (Anantharaman, Cancès 2009) pour des systèmes de Kohn-Sham sans polarisation de spin est étendu au cas des systèmes avec polarisation de spin.Dans la seconde partie, nous étudions l'approximation GW. Dans un premier temps, nous donnons une définition mathématique de la fonction de Green à un corps, et nous expliquons comment les énergies d'excitation des molécules peuvent être obtenues à partir de cette fonction de Green. La fonction de Green peut être numériquement approchée par la résolution des équations GW. Nous discutons du caractère bien posé de ces équations, et nous démontrons que les équations GW0 sont bien posées dans un régime perturbatif. Ce travail a été effectué en collaboration avec Eric Cancès et Gabriel Stoltz.Dans le troisième et dernière partie, nous analysons des méthodes numériques pour calculer les diagrammes de bandes de structures cristallines. Cette partie est divisée en deux chapitres. Dans le premier, nous nous intéressons à l'approximation de Hartree-Fock réduite (voir (Cances, Deleurence, Lewin 2008)). Nous prouvons que si le cristal est un insolant ou un semi-conducteur, alors les calculs réalisés dans des supercellules convergent exponentiellement vite vers la solution exacte lorsque la taille de la supercellule tend vers l'infini. Ce travail a été réalisé en collaboration avec Salma Lahbabi. Dans le dernier chapitre, nous présentons une nouvelle méthode numérique pour le calcul des diagrammes de bandes de cristaux (qui peuvent être aussi bien isolants que conducteurs). Cette méthode utilise la technique des bases réduites, et accélère les méthodes traditionnelles. Ce travail a été fait en collaboration avec Eric Cancès, Virginie Ehrlacher et Damiano Lombardi