Thèse soutenue

Distribution spectrale limite pour des matrices à entrées corrélées et inégalité de type Bernstein

FR  |  
EN
Auteur / Autrice : Marwa Banna
Direction : Florence Merlevède
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 25/09/2015
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Analyse et de Mathématiques Appliquées - LAMA
Jury : Président / Présidente : Olivier Guédon
Examinateurs / Examinatrices : Florence Merlevède, Emmanuel Rio, Walid Hachem, Jamal Najim
Rapporteurs / Rapporteuses : Wlodzimierz Bryc, Bernard Delyon

Résumé

FR  |  
EN

Cette thèse porte essentiellement sur l'étude de la distribution spectrale limite de grandes matrices aléatoires dont les entrées sont corrélées et traite également d'inégalités de déviation pour la plus grande valeur propre d'une somme de matrices aléatoires auto-adjointes et géométriquement absolument réguliers. On s'intéresse au comportement asymptotique de grandes matrices de covariances et de matrices de type Wigner dont les entrées sont des fonctionnelles d'une suite de variables aléatoires à valeurs réelles indépendantes et de même loi. On montre que dans ce contexte la distribution spectrale empirique des matrices peut être obtenue en analysant une matrice gaussienne ayant la même structure de covariance. Cette approche est valide que ce soit pour des processus à mémoire courte ou pour des processus exhibant de la mémoire longue, et on montre ainsi un résultat d'universalité concernant le comportement asymptotique du spectre de ces matrices. Notre approche consiste en un mélange de la méthode de Lindeberg par blocs et d'une technique d'interpolation Gaussienne. Une nouvelle inégalité de concentration pour la transformée de Stieltjes pour des matrices symétriques ayant des lignes m-dépendantes est établie. Notre méthode permet d'obtenir, sous de faibles conditions, l'équation intégrale satisfaite par la transformée de Stieltjes de la distribution spectrale limite. Ce résultat s'applique à des matrices associées à des fonctions de processus linéaires, à des modèles ARCH ainsi qu'à des modèles non-linéaires de type Volterra. On traite également le cas des matrices de Gram dont les entrées sont des fonctionnelles d'un processus absolument régulier (i.e. β-mélangeant).On établit une inégalité de concentration qui nous permet de montrer, sous une condition de décroissance arithmétique des coefficients de β-mélange, que la transformée de Stieltjes se concentre autour de sa moyenne. On réduit ensuite le problème à l'étude d'une matrice gaussienne ayant une structure de covariance similaire via la méthode de Lindeberg par blocs. Des applications à des chaînes de Markov stationnaires et Harris récurrentes ainsi qu'à des systèmes dynamiques sont données. Dans le dernier chapitre de cette thèse, on étudie des inégalités de déviation pour la plus grande valeur propre d'une somme de matrices aléatoires auto-adjointes. Plus précisément, on établit une inégalité de type Bernstein pour la plus grande valeur propre de la somme de matrices auto-ajointes, centrées et géométriquement β-mélangeantes dont la plus grande valeur propre est bornée. Ceci étend d'une part le résultat de Merlevède et al. (2009) à un cadre matriciel et généralise d'autre part, à un facteur logarithmique près, les résultats de Tropp (2012) pour des sommes de matrices indépendantes