Thèse soutenue

Programmation linéaire colorée
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Pauline Sarrabezolles
Direction : Frédéric Meunier
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 06/07/2015
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Centre d'enseignement et de recherche en mathématiques et calcul scientifique (Champs-sur-Marne, Seine-et-Marne) - CERMICS
Jury : Président / Présidente : Xavier Goaoc
Examinateurs / Examinatrices : Frédéric Meunier, Antoine Deza, Nabil Mustafa, András Sebő
Rapporteurs / Rapporteuses : Jesús A. De Loera, Victor Chepoi

Résumé

FR  |  
EN

Le théorème de Carathéodory coloré, prouvé en 1982 par Bárány, énonce le résultat suivant. Etant donnés d Å1 ensembles de points S1,SdÅ1 dans Rd , si chaque Si contient 0 dans son enveloppe convexe, alors il existe un sous-ensemble arc-en-ciel T µ SdÅ1 iÆ1 Si contenant 0 dans son enveloppe convexe, i.e. un sous-ensemble T tel que jT \Si j • 1 pour tout i et tel que 0 2 conv(T ). Ce théorème a donné naissance à de nombreuses questions, certaines algorithmiques et d’autres plus combinatoires. Dans ce manuscrit, nous nous intéressons à ces deux aspects. En 1997, Bárány et Onn ont défini la programmation linéaire colorée comme l’ensemble des questions algorithmiques liées au théorème de Carathéodory coloré. Parmi ces questions, deux ont particulièrement retenu notre attention. La première concerne la complexité du calcul d’un sous-ensemble arc-en-ciel comme dans l’énoncé du théorème. La seconde, en un sens plus générale, concerne la complexité du problème de décision suivant. Etant donnés des ensembles de points dans Rd , correspondant aux couleurs, il s’agit de décider s’il existe un sous-ensemble arc-en-ciel contenant 0 dans son enveloppe convexe, et ce en dehors des conditions du théorème de Carathéodory coloré. L’objectif de cette thèse est de mieux délimiter les cas polynomiaux et les cas “difficiles” de la programmation linéaire colorée. Nous présentons de nouveaux résultats de complexités permettant effectivement de réduire l’ensemble des cas encore incertains. En particulier, des versions combinatoires du théorème de Carathéodory coloré sont présentées d’un point de vue algorithmique. D’autre part, nous montrons que le problème de calcul d’un équilibre de Nash dans un jeu bimatriciel peut être réduit polynomialement à la programmation linéaire coloré. En prouvant ce dernier résultat, nous montrons aussi comment l’appartenance des problèmes de complémentarité à la classe PPAD peut être obtenue à l’aide du lemme de Sperner. Enfin, nous proposons une variante de l’algorithme de Bárány et Onn, calculant un sous ensemble arc-en-ciel contenant 0 dans son enveloppe convexe sous les conditions du théorème de Carathéodory coloré. Notre algorithme est clairement relié à l’algorithme du simplexe. Après une légère modification, il coïncide également avec l’algorithme de Lemke, calculant un équilibre de Nash dans un jeu bimatriciel. La question combinatoire posée par le théorème de Carathéodory coloré concerne le nombre de sous-ensemble arc-en-ciel contenant 0 dans leurs enveloppes convexes. Deza, Huang, Stephen et Terlaky (Colourful simplicial depth, Discrete Comput. Geom., 35, 597–604 (2006)) ont formulé la conjecture suivante. Si jSi j Æ d Å1 pour tout i 2 {1, . . . ,d Å1}, alors il y a au moins d2Å1 sous-ensemble arc-en-ciel contenant 0 dans leurs enveloppes convexes. Nous prouvons cette conjecture à l’aide d’objets combinatoires, connus sous le nom de systèmes octaédriques, dont nous présentons une étude plus approfondie