Energies de réseaux et calcul variationnel
Auteur / Autrice : | Laurent Betermin |
Direction : | Etienne Sandier |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 21/09/2015 |
Etablissement(s) : | Paris Est |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'Analyse et de Mathématiques Appliquées - LAMA |
Jury : | Président / Présidente : Sylvia Serfaty |
Examinateurs / Examinatrices : Etienne Sandier, Djalil Chafaï, Yuxin Ge | |
Rapporteur / Rapporteuse : Florian Theil, Xavier Blanc |
Mots clés
Mots clés contrôlés
Résumé
Dans cette thèse, nous étudions des problèmes de minimisation d'énergies discrètes et nous cherchons à comprendre pourquoi une structure périodique peut être un minimiseur pour une énergie d'interaction, c'est ce que l'on appelle un problème de cristallisation. Après avoir montré qu'un réseau de R^d soumis à un certain potentiel paramétré peut être vu comme un minimum local, nous démontrons des résultats d'optimalité du réseau triangulaire parmi les réseaux de Bravais du plan pour certaines énergies par point, avec ou sans densité fixée. Finalement, nous démontrons, à partir des travaux de Sandier et Serfaty sur les gaz de Coulomb bidimensionnels, la conjecture de Rakhmanov-Saff-Zhou, c'est-à-dire l'existence d'un terme d'ordre n dans le développement asymptotique de l'énergie logarithmique optimale pour n points sur la sphère unité de R^3. De plus, nous montrons l'équivalence entre la conjecture de Brauchart-Hardin-Saff portant sur la valeur de ce terme d'ordre n et celle de Sandier-Serfaty sur l'optimalité du réseau triangulaire pour une énergie coulombienne renormalisée