Thèse soutenue

Energies de réseaux et calcul variationnel

FR  |  
EN
Auteur / Autrice : Laurent Betermin
Direction : Etienne Sandier
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 21/09/2015
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'Analyse et de Mathématiques Appliquées - LAMA
Jury : Président / Présidente : Sylvia Serfaty
Examinateurs / Examinatrices : Etienne Sandier, Djalil Chafaï, Yuxin Ge
Rapporteur / Rapporteuse : Florian Theil, Xavier ‎Blanc‎

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Dans cette thèse, nous étudions des problèmes de minimisation d'énergies discrètes et nous cherchons à comprendre pourquoi une structure périodique peut être un minimiseur pour une énergie d'interaction, c'est ce que l'on appelle un problème de cristallisation. Après avoir montré qu'un réseau de R^d soumis à un certain potentiel paramétré peut être vu comme un minimum local, nous démontrons des résultats d'optimalité du réseau triangulaire parmi les réseaux de Bravais du plan pour certaines énergies par point, avec ou sans densité fixée. Finalement, nous démontrons, à partir des travaux de Sandier et Serfaty sur les gaz de Coulomb bidimensionnels, la conjecture de Rakhmanov-Saff-Zhou, c'est-à-dire l'existence d'un terme d'ordre n dans le développement asymptotique de l'énergie logarithmique optimale pour n points sur la sphère unité de R^3. De plus, nous montrons l'équivalence entre la conjecture de Brauchart-Hardin-Saff portant sur la valeur de ce terme d'ordre n et celle de Sandier-Serfaty sur l'optimalité du réseau triangulaire pour une énergie coulombienne renormalisée