Modélisation multi-échelles de la morphologie urbaine à partir de données carroyées de population et de bâti
Auteur / Autrice : | Johanna Baro |
Direction : | Patrice Aknin |
Type : | Thèse de doctorat |
Discipline(s) : | Sciences et Technologies de l'Information Géographique |
Date : | Soutenance le 25/03/2015 |
Etablissement(s) : | Paris Est |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire Génie des Réseaux de Transport Terrestre et Informatique Avancé (Noisy-le-grand, Seine-Saint-Denis) - GRETTIA |
Jury : | Président / Présidente : Christiane Weber |
Examinateurs / Examinatrices : Patrice Aknin, Jean-Paul Hubert, Olivier Bonin, Etienne Côme, Michel Verleysen | |
Rapporteur / Rapporteuse : Pierre Frankhauser, Charles Bouveyron |
Mots clés
Résumé
La question des liens entre forme urbaine et transport se trouve depuis une vingtaine d'années au cœur des réflexions sur la mise en place de politiques d'aménagement durable. L'essor de la diffusion de données sur grille régulière constitue dans ce cadre une nouvelle perspective pour la modélisation de structures urbaines à partir de mesures de densités affranchies de toutes les contraintes des maillages administratifs. A partir de données de densité de population et de surface bâtie disponibles à l'échelle de la France sur des grilles à mailles de 200 mètres de côté, nous proposons deux types de classifications adaptées à l'étude des pratiques de déplacement et du développement urbain : des classifications des tissus urbains et des classifications des morphotypes de développement urbain. La construction de telles images classées se base sur une démarche de modélisation théorique et expérimentale soulevant de forts enjeux méthodologiques quant à la classification d'espaces urbains statistiquement variés. Pour nous adapter au traitement exhaustif de ces espaces, nous avons proposé une méthode de classification des tissus urbains par transfert d'apprentissage supervisé. Cette méthode utilise le formalisme des champs de Markov cachés pour prendre en compte les dépendances présentes dans ces données spatialisées. Les classifications en morphotypes sont ensuite obtenus par un enrichissement de ces premières images classées, formalisé à partir de modèles chorématiques et mis à œuvre par raisonnement spatial qualitatif. L'analyse de ces images classées par des méthodes de raisonnement spatial quantitatif et d'analyses factorielles nous a permis de révéler la diversité morphologique de 50 aires urbaines françaises. Elle nous a permis de mettre en avant la pertinence de ces classifications pour caractériser les espaces urbains en accord avec différents enjeux d'aménagement relatifs à la densité ou à la multipolarité