Thèse soutenue

Compression guidée par automate et noyaux rationnels

FR  |  
EN
Auteur / Autrice : Ahmed Amarni
Direction : Marie-Pierre Béal
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 11/05/2015
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'informatique de l'Institut Gaspard Monge (1997-2009) - LIGM
Jury : Président / Présidente : Olivier Carton
Examinateurs / Examinatrices : Marie-Pierre Béal, Sylvain Lombardy
Rapporteurs / Rapporteuses : Pascal Caron

Résumé

FR  |  
EN

En raison de l'expansion des données, les algorithmes de compression sont désormais cruciaux. Nous abordons ici le problème de trouver des algorithmes de compression optimaux par rapport à une source de Markov donnée. A cet effet, nous étendons l'algorithme de Huffman classique. Pour se faire premièrement on applique Huffman localement à chaque état de la source Markovienne, en donnant le résultat de l'efficacité obtenue pour cet algorithme. Mais pour bien approfondir et optimiser quasiment l'efficacité de l'algorithme, on donne un autre algorithme qui est toujours appliqué localement à chaque états de la source Markovienne, mais cette fois ci en codant les facteurs partant de ces états de la source Markovienne de sorte à ce que la probabilité du facteur soit une puissance de 1/2 (sachant que l'algorithme de Huffman est optimal si et seulement si tous les symboles à coder ont une probabilité puissance de 1/2). En perspective de ce chapitre on donne un autre algorithme (restreint à la compression de l'étoile) pour coder une expression à multiplicité, en attendant dans l'avenir à coder une expression complète