Thèse soutenue

Algorithmes passant à l’échelle pour la gestion de données du Web sémantique sur les platformes cloud

FR  |  
EN
Auteur / Autrice : Stamatis Zampetakis
Direction : Ioana Gabriela Manolescu GoujotFrançois Goasdoué
Type : Thèse de doctorat
Discipline(s) : Informatique
Date : Soutenance le 21/09/2015
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Informatique de Paris-Sud
Partenaire(s) de recherche : Laboratoire : OAK (Saclay) - Laboratoire de recherche en informatique (Orsay, Essonne ; 1998-2020)
Jury : Président / Présidente : Serge Abiteboul
Examinateurs / Examinatrices : Ioana Gabriela Manolescu Goujot, François Goasdoué, Serge Abiteboul, Bernd Amann, M. Tamer Özsu, Christine Froidevaux, Patrick Valduriez
Rapporteur / Rapporteuse : Bernd Amann, M. Tamer Özsu

Résumé

FR  |  
EN

Afin de construire des systèmes intelligents, où les machines sont capables de raisonner exactement comme les humains, les données avec sémantique sont une exigence majeure. Ce besoin a conduit à l’apparition du Web sémantique, qui propose des technologies standards pour représenter et interroger les données avec sémantique. RDF est le modèle répandu destiné à décrire de façon formelle les ressources Web, et SPARQL est le langage de requête qui permet de rechercher, d’ajouter, de modifier ou de supprimer des données RDF. Être capable de stocker et de rechercher des données avec sémantique a engendré le développement des nombreux systèmes de gestion des données RDF.L’évolution rapide du Web sémantique a provoqué le passage de systèmes de gestion des données centralisées à ceux distribués. Les premiers systèmes étaient fondés sur les architectures pair-à-pair et client-serveur, alors que récemment l’attention se porte sur le cloud computing.Les environnements de cloud computing ont fortement impacté la recherche et développement dans les systèmes distribués. Les fournisseurs de cloud offrent des infrastructures distribuées autonomes pouvant être utilisées pour le stockage et le traitement des données. Les principales caractéristiques du cloud computing impliquent l’évolutivité́, la tolérance aux pannes et l’allocation élastique des ressources informatiques et de stockage en fonction des besoins des utilisateurs.Cette thèse étudie la conception et la mise en œuvre d’algorithmes et de systèmes passant à l’échelle pour la gestion des données du Web sémantique sur des platformes cloud. Plus particulièrement, nous étudions la performance et le coût d’exploitation des services de cloud computing pour construire des entrepôts de données du Web sémantique, ainsi que l’optimisation de requêtes SPARQL pour les cadres massivement parallèles.Tout d’abord, nous introduisons les concepts de base concernant le Web sémantique et les principaux composants des systèmes fondés sur le cloud. En outre, nous présentons un aperçu des systèmes de gestion des données RDF (centralisés et distribués), en mettant l’accent sur les concepts critiques de stockage, d’indexation, d’optimisation des requêtes et d’infrastructure.Ensuite, nous présentons AMADA, une architecture de gestion de données RDF utilisant les infrastructures de cloud public. Nous adoptons le modèle de logiciel en tant que service (software as a service - SaaS), où la plateforme réside dans le cloud et des APIs appropriées sont mises à disposition des utilisateurs, afin qu’ils soient capables de stocker et de récupérer des données RDF. Nous explorons diverses stratégies de stockage et d’interrogation, et nous étudions leurs avantages et inconvénients au regard de la performance et du coût monétaire, qui est une nouvelle dimension importante à considérer dans les services de cloud public.Enfin, nous présentons CliqueSquare, un système distribué de gestion des données RDF basé sur Hadoop. CliqueSquare intègre un nouvel algorithme d’optimisation qui est capable de produire des plans massivement parallèles pour des requêtes SPARQL. Nous présentons une famille d’algorithmes d’optimisation, s’appuyant sur les équijointures n- aires pour générer des plans plats, et nous comparons leur capacité à trouver les plans les plus plats possibles. Inspirés par des techniques de partitionnement et d’indexation existantes, nous présentons une stratégie de stockage générique appropriée au stockage de données RDF dans HDFS (Hadoop Distributed File System). Nos résultats expérimentaux valident l’effectivité et l’efficacité de l’algorithme d’optimisation démontrant également la performance globale du système.