Thèse soutenue

Nanomatériaux pour applications thermoélectriques

FR  |  
EN
Auteur / Autrice : Thi Thanh Xuan Vo
Direction : Nita Dragoë
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 17/09/2015
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Chimie de Paris-Sud (Orsay, Essonne ; 2006-2015)
Partenaire(s) de recherche : Laboratoire : Institut de chimie moléculaire et des matériaux d’Orsay (Orsay, Essonne ; 2006-....)
Equipe de recherche : Synthèse, Propriétés et Modélisation des Matériaux (2014-.... ; Orsay, Essonne)
Jury : Président / Présidente : Pascale Foury-Leylekian
Examinateurs / Examinatrices : Nita Dragoë, Pascale Foury-Leylekian, Oana Carp, Samuel Georges, Gwenale Corbel, Quoc Nghi Pham
Rapporteurs / Rapporteuses : Oana Carp, Samuel Georges

Résumé

FR  |  
EN

Les nano-composés de type Sn1-xTaxO2 (0 ≤ x ≤ 0,03) ont été étudiés en vue de leurs propriétés thermoélectriques. Une méthode de co-précipitation a été utilisée pour synthétiser des nano-poudres ayant une taille des grains moyenne d’environ 3 nm. L’étude structurale et microstructurale a suggéré une limite de solubilité pour le Ta de 0,008 ≤ x < 0,010. Ces nano-poudres ont été ensuite densifiées par Spark Plasma Sintering, avec des compacités atteignant ~ 95%. Le dopage en Ta a permis une amélioration des propriétés thermoélectriques du SnO2 et, en accord avec la limite de solubilité, une valeur maximale du facteur de mérite de 4,7x10-5 K-1 a été observée pour l’échantillon x = 0,008. De plus, nous avons démontré qu’une diminution de la taille des grains permettait d’améliorer le coefficient Seebeck, de diminuer la conductivité thermique, mais conduisait à une diminution de la conductivité électrique. La stabilité des oxydes, notamment à l'échelle nanométrique, est remise en question par des caractérisations physico-chimiques. Partant de ces matériaux à base de SnO2, un nano-composite (ZnO-SnO2) a été étudié. Le composé Zn1-xGdxO (0 ≤ x ≤ 0,03) a été préparé par la méthode de Péchini et caractérisé en comparant avec d’autres matériaux à base de ZnO. Un premier test de nano-composite M30 (30% en masse Sn0.996Ta0.004O2 et 70% en masse Zn0.997Gd0.003O) a été mené. Le résultat obtenu a montré qu’une concentration de nano-inclusion Sn0.996Ta0.004O2 de 30 % ne permettait pas d’améliorer les propriétés thermoélectriques du nano-composite M30, par rapport aux matériaux de départ.