Thèse soutenue

Étude expérimentale et théorique de la fragmentation de Composés Organiques Volatils pour des applications environnementales

FR  |  
EN
Auteur / Autrice : Alexis Chollet
Direction : Pierre DésesquellesPierre Tardiveau
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 20/03/2015
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Modélisation et Instrumentation en Physique, Energie, Géosciences et Environnement (Orsay, Essonne ; 2010-2015)
Partenaire(s) de recherche : Laboratoire : Centre de sciences nucléaires et de sciences de la matière (Orsay, Essonne ; 1998-2019) - Laboratoire de physique des gaz et des plasmas (Orsay, Essonne ; 1965-....)
Jury : Président / Présidente : Hélène Mestdagh
Examinateurs / Examinatrices : Pierre Désesquelles, Pierre Tardiveau, Hélène Mestdagh, Khaled Hassouni, Riccardo Spezia, Nathalie Carrasco
Rapporteurs / Rapporteuses : Khaled Hassouni, Riccardo Spezia

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Ce travail de thèse porte sur l'étude expérimentale et théorique de la fragmentation de molécules organiques. Nous avons pour cela construit un nouveau réacteur plasma non-thermique et transformé un modèle statistique de fragmentation nucléaire (Microcanonical Metropolis Monte Carlo ou MMMC) pour décrire la fragmentation d'espèces CnHm. Le plasma non-thermique est créé par une impulsion nanoseconde haute-tension (100 kV) avec un front de montée très raide (15-20 kV.ns-1). Cette impulsion permet d'obtenir un volume plasmagène diffus important et de créer de fortes densités d'espèces réactives (radicaux, métastables, etc.) pouvant réagir avec les molécules organiques. Dans le cas de la fragmentation du propane, la décharge hors-équilibre considérée permet de générer comme sous-produits majoritaires du méthane, de l'éthane et du propène. Son efficacité énergétique de conversion est deux fois plus élevée que celle obtenue dans le cas d'une décharge à barrière diélectrique ou d'une décharge pré-ionisée. Le modèle MMMC décrit, pour une énergie fixée, l'espace des phases accessible au système. L'ensemble des degrés de libertés statiques (dégénérescences, excitation interne, localisation, etc.) et dynamiques (translation et rotation) de tous des fragments de la molécule parent sont pris en compte. Les caractéristiques physiques des fragments (énergies de dissociations, géométries, fréquences de vibration, etc.), nécessaires pour ces calculs, sont déterminées à l'aide d'un code ab-initio. Différentes méthodes de calcul (composite ou DFT) et différents niveaux de calcul (sans ou avec polarisation de l'hydrogène) ont été comparés aux données expérimentales. Nous avons montré que la prise en compte de la polarisation de l'hydrogène avait une influence importante sur les résultats. Les probabilités des voies de fragmentation en fonction de l'énergie d'excitation pour les deux méthodes sont relativement proches. Les principaux écarts s’expliquent par des différences d’énergie du fondamental de certains fragments. La comparaison des résultats théoriques et expérimentaux est indirecte car le modèle MMMC ne décrit que la phase de fragmentation. Les produits résultants vont ensuite réagir entre eux et avec le milieu pendant et après l’excitation plasma. L’évolution cinétique complexe des produits doit donc être prise en compte. D’autre part, la distribution d’énergie déposée dans la molécule parent par les états métastables de l'azote et les collisions électroniques doit également être déterminée. Ces deux étapes sont nécessaires pour obtenir des résultats théoriques comparables aux observables expérimentales. Cette étude sera une prolongation naturelle de notre travail. Les résultats expérimentaux semblent toutefois montrer que le modèle surestime le nombre de ruptures de liaisons CH. Ceci est probablement du au fait que la première étape du modèle, la construction des fragments, opère uniquement par rupture de liaisons dans la molécule de propane ou de propène parent. Les molécules fragments H2 et CH4 ne sont donc pas autorisées alors qu’un schéma réactionnel les produisant en une étape est envisageable (et que les fragments C3H6 et C2H4 sont mesurés en abondance). L’énergie non consommée dans leur production est donc reportée sur la rupture de liaisons CH.