Thèse soutenue

Développement et validation d’un modèle de sources virtuelles adapté à la prédiction d’images EPID pour le contrôle qualité des traitements de RCMI

FR  |  
EN
Auteur / Autrice : Isabelle Chabert
Direction : Loïc Lenoir de Carlan
Type : Thèse de doctorat
Discipline(s) : Physique
Date : Soutenance le 11/02/2015
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Modélisation et Instrumentation en Physique, Energie, Géosciences et Environnement (Orsay, Essonne ; 2010-2015)
Partenaire(s) de recherche : Laboratoire : Laboratoire d'intégration des systèmes et des technologies (Gif-sur-Yvette, Essonne ; 2001-....)
Jury : Président / Présidente : Irène Buvat
Examinateurs / Examinatrices : Loïc Lenoir de Carlan, Irène Buvat, Régine Gschwind, David Sarrut, Delphine Lazaro, Albert Lisbona
Rapporteurs / Rapporteuses : Régine Gschwind, David Sarrut

Résumé

FR  |  
EN

L’essor des nouvelles techniques de traitement en radiothérapie externe a rendu nécessaire la mise en place de nouveaux contrôles qualité (CQ). Il est en effet capital de s’assurer que la dose délivrée au patient est bien conforme à celle qui lui a été prescrite. Les détecteurs EPID, initialement utilisés pour contrôler l’exactitude du positionnement du patient, sont de plus en plus employés pour vérifier la conformité du traitement. L’image qu’ils enregistrent au cours d’une irradiation peut par exemple être comparée à une image de référence, qui correspond à ce qui aurait été mesuré si le traitement s’était déroulé dans les conditions de sa planification. Le succès de ce CQ repose (1) sur la précision avec laquelle on peut prédire l’image EPID (ou portale) de référence et (2) sur les performances de l’outil de comparaison d’image utilisé. Nous avons étudié au cours de cette thèse ces deux points clés. Nous nous sommes tout d’abord tournés vers une méthode de prédiction d’images EPID haute résolution basée sur le couplage de simulations Monte-Carlo (MC) et de la technique de débruitage DGPLM. Pour la mettre en œuvre, nous avons modélisé un accélérateur linéaire d’électrons à usage médical (linac) dans le code MC PENELOPE et optimisé les paramètres de sa source d’électrons primaires pour des calculs de dose dans l’eau. L’analyse d’un fichier d’espace des phases (PSF) de 71 Go stocké sous le cône égalisateur nous a ensuite permis de développer un modèle de sources virtuelles (MSV) représenté par des histogrammes corrélés (environ 200 Mo). Ce nouveau MSV, plus compact que le PSF, est tout aussi précis pour les calculs de dose dans l’eau si son maillage est déterminé selon une méthode adaptative. La modélisation du détecteur EPID dans PENELOPE suggère que les hypothèses faites sur les propriétés de la tâche focale du linac sont trop simplistes et doivent être reconsidérées. L’évaluation du MSV pour la prédiction d’images EPID haute résolution a quant à elle conduit à d’excellents résultats. Une fois la chaine de prédiction de l’image portale de référence validée, nous l’avons utilisée pour détecter des irrégularités dans les traitements de RCMI. Dans une étude préliminaire, nous avons volontairement introduit des erreurs de traitement dans le calcul d’images EPID (dérive du faisceau d’irradiation, modification de la morphologie ou de la position du patient). Le γ-index traditionnellement utilisé en routine s’est avéré moins performant que le χ-index pour les détecter. Une étude plus approfondie aura pour objet de déterminer des seuils de détection d’erreurs en fonction de leur nature et d’éprouver les performances d’autres tests.