Motifs de la logique floue pour l'analyse des sentiments et en imagerie
Auteur / Autrice : | Lawrence Nderu |
Direction : | Herman Akdag, Nicolas Jouandeau |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 14/12/2015 |
Etablissement(s) : | Paris 8 |
Ecole(s) doctorale(s) : | École doctorale Sciences sociales (Saint-Denis, Seine-Saint-Denis ; 2000-....) |
Partenaire(s) de recherche : | Equipe de recherche : Laboratoire d' informatique avancée de Saint-Denis |
Jury : | Président / Présidente : Christophe Marsala |
Examinateurs / Examinatrices : Herman Akdag, Nicolas Jouandeau | |
Rapporteur / Rapporteuse : Michel Herbin, Nicolas Labroche |
Résumé
La logique floue est aujourd'hui universellement admise comme discipline ayant fait ses preuves à l'intersection des mathématiques, de l'informatique, des sciences cognitives et de l'Intelligence Artificielle. En termes formels, la logique floue est une extension de la logique classique ayant pour but de mesurer la flexibilité du raisonnement humain, et permettant la modélisation des imperfections des données, en particulier, les deux imperfections les plus fréquentes : l'imprécision et l'incertitude. En outre, la logique floue ignore le principe du tiers exclu et celui de non-contradiction.Nous n'allons pas, dans ce court résumé de la thèse, reprendre et définir tous les concepts de cet outil devenu désormais classique : fonction d'appartenance, degré d'appartenance, variable linguistique, opérateurs flous, fuzzyfication, défuzzication, raisonnement approximatif … L'un des concepts de base de cette logique est la notion de possibilité qui permet de modéliser la fonction d'appartenance d'un concept. La possibilité d'un événement diffère de sa probabilité dans la mesure où elle n'est pas intimement liée à celle de l'événement contraire. Ainsi, par exemple, si la probabilité qu'il pleuve demain est de 0,6, alors la probabilité qu'il ne pleuve pas doit être égale à 0,4 tandis que les possibilités qu'il pleuve demain ou non peuvent toutes les deux être égales à 1 (ou encore deux autres valeurs dont la somme peut dépasser 1).Dans le domaine de l'informatique, l'apprentissage non supervisé (ou « clustering ») est une méthode d'apprentissage automatique quasi-autonome. Il s'agit pour un algorithme de diviser un groupe de données, en sous-groupes de manière que les données considérées comme les plus similaires soient associées au sein d'un groupe homogène. Une fois que l'algorithme propose ces différents regroupements, le rôle de l'expert ou du groupe d'experts est alors de nommer chaque groupe, éventuellement diviser certains ou de regrouper certains, afin de créer des classes. Les classes deviennent réelles une fois que l'algorithme a fonctionné et que l'expert les a nommées.Encore une fois, notre travail, comme tous les travaux du domaine, vise à adapter les modèles traditionnelles d'apprentissage et/ou de raisonnement à l'imprécision du monde réel. L'analyse des sentiments à partir de ressources textuelles et les images dans le cadre de l'agriculture de précision nous ont permis d'illustrer nos hypothèses. L'introduction par le biais de notre travail du concept de motifs flous est sans aucun doute une contribution majeure.Ce travail a donné lieu à trois contributions majeures :