Thèse soutenue

Modélisation multi-échelle de l'interaction fluide-structure dans les systèmes tubulaires
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Audrey Nathalie Gineau
Direction : Didier LucorPierre SagautÉlisabeth Longatte
Type : Thèse de doctorat
Discipline(s) : Mécanique des fluides
Date : Soutenance le 06/05/2015
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Sciences mécaniques, acoustique, électronique et robotique de Paris
Partenaire(s) de recherche : Laboratoire : Institut Jean Le Rond d'Alembert
Jury : Examinateurs / Examinatrices : Olivier Simonin, Christian Geindreau, Olivier Doaré, Djimédo Kondo, Jean-Frédéric Gerbeau

Résumé

FR  |  
EN

Cette thèse a pour objectif de modéliser le couplage fluide-structure pouvant survenir dans les faisceaux tubulaires des réacteurs nucléaires. Leurs simulations numériques directes étant hors de portée, on met en œuvre une approche multi-échelle: il s'agit de tirer profit du coût modeste d'une description macroscopique, et à la fois, de la précision des informations microscopiques. Vis-à-vis des modèles existants, le travail de développement se focalise sur la prise en compte de la convection dans le calcul des champs hydrodynamiques, mais surtout, sur la possibilité de restituer des réponses vibratoires variées au sein d'un même faisceau. L'homogénéisation aboutit à un système d'équations gouvernant les Interactions Fluide-Solide à une échelle macroscopique. Ces équations sont couplées par une source en quantité de mouvement, traduisant les charges hydrodynamiques exercées sur une structure donnée. Cette force à modéliser représente une loi de fermeture du problème homogénéisé, mettant en jeu des coefficients a priori inconnus. Une méthode d'estimation est proposée à partir des champs microscopiques obtenus par simulation directe sur un domaine réduit et représentatif du large système de référence. Les capacités prédictives du modèle homogénéisé sont évaluées en comparaison avec des données de référence, issues de calculs numériques directs microscopiques. Chaque système considéré présente une variété de réponses en déplacement que le modèle homogénéisé restitue avec un accord satisfaisant. Cette approche multi-échelle semble être un bon compromis entre le coût des réalisations numériques et la précision attendue des données vibratoires et hydrodynamiques.