Instrumentation d'un récepteur hétérodyne à 2.6 THz
Auteur / Autrice : | Fabien Defrance |
Direction : | Martina Wiedner |
Type : | Thèse de doctorat |
Discipline(s) : | Méthodes Instrumentales en Astrophysique et leurs Applications Spatiales |
Date : | Soutenance le 14/12/2015 |
Etablissement(s) : | Paris 6 |
Ecole(s) doctorale(s) : | École doctorale Astronomie et astrophysique d'Île-de-France (Meudon, Hauts-de-Seine ; 1992-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d’étude du rayonnement et de la matière en astrophysique et atmosphères (Paris ; 2002-....) |
Jury : | Président / Présidente : Aziz Benlarbi-Delaï |
Examinateurs / Examinatrices : Christine Letrou, Massimiliano Casaletti | |
Rapporteur / Rapporteuse : Alessandro Navarrini, Paul Crozat |
Mots clés
Mots clés contrôlés
Résumé
Les observations astronomiques nous permettent d’étudier l’univers et de comprendre les phénomènes qui le gouvernent. La matière visible dans l’univers émet des ondes à des fréquences très diverses, réparties sur tout le spectre électromagnétique (domaines radio, submillimétrique, infrarouge, visible, ultraviolet, X et gamma). Ces ondes nous renseignent sur certaines caractéristiques physico-chimiques des éléments observés (nature, température, mouvement, etc.). Des télescopes couvrant différentes plages de fréquences sont nécessaires pour observer l’ensemble du spectre électromagnétique. Les radio-télescopes, sensibles aux ondes (sub)millimétriques, sont principalement dédiés à l’observation de la matière froide présente dans le milieu interstellaire. Le milieu interstellaire est le berceau des étoiles et son étude est essentielle pour comprendre les différentes étapes de la vie des étoiles. La fréquence maximale d’observation des radio-télescopes est en augmentation depuis la fabrication des premiers radio-télescopes dans les années 1930. Récemment, des radio-télescopes capables de détecter des signaux dans l’infrarouge lointain, au delà de 1 THz, ont été développés. Ces avancées technologiques ont été motivées, entre autres, par la présence, dans le milieu interstellaire, de molécules et d’ions uniquement observables à des fréquences supérieures à 1 THz. Pour observer des raies avec une haute résolution spectrale, les radio-télescopes sont équipés de récepteurs hétérodynes. Ce type de récepteur permet d’abaisser la fréquence de la raie spectrale observée tout en conservant ses caractéristiques (une raie observée à 1 THz peut, par exemple, être décalée à une fréquence de 1 GHz). Cette technique permet d’observer des raies avec une très haute résolution spectrale et c’est pourquoi les récepteurs hétérodynes sont largement utilisés pour les observations de raies spectrales aux fréquences GHz et THz. Dans les récepteurs hétérodynes, un oscillateur local (OL) émet un signal monochromatique à une fréquence très proche de celle du signal observé. Les deux signaux sont superposés à l’aide d’un diplexeur et transmis à un mélangeur. Ce dernier réalise le battement des deux signaux et génère un signal identique au signal observé mais à une fréquence plus faible. Durant ma thèse, j’ai travaillé sur la construction, la caractérisation et l’amélioration d’un récepteur hétérodyne à 2.6 THz. Cette fréquence d’observation (2.6 THz) est l’une des plus hautes atteintes par les récepteurs hétérodynes THz existant actuellement, ce qui constitue un défi technologique très important. Dans le but de caractériser et d’améliorer ce récepteur, je me suis concentré sur trois aspects essentiels .....