Thèse soutenue

Elaboration d'oxydes et de sulfures à grande bande interdite pour les cellules photovoltaïques à base de Cu(In,Ga)Se2 par dépôt chimique en phase vapeur par flux alternés (ALD) activé par plasma

FR  |  
EN
Auteur / Autrice : Cathy Bugot
Direction : Daniel Lincot
Type : Thèse de doctorat
Discipline(s) : Physique et Chimie des matériaux et Génie des procédés et technologies avancées
Date : Soutenance le 29/10/2015
Etablissement(s) : Paris 6
Ecole(s) doctorale(s) : École doctorale Physique et chimie des matériaux (Paris ; 2000-....)
Partenaire(s) de recherche : Laboratoire : INSTITUT DE RECHERCHE ET DEVELOPPEMENT SUR L'ENERGIE PHOTOVOLTAÏQUE
Jury : Examinateurs / Examinatrices : Frédérique Donsanti, Pere Roca i Cabarrocas, Christel Laberty-Robert, Daniel Bellet, Arnaud Mantoux, Julien Bachmann, Éric Tomasella, Nathanaëlle Schneider

Résumé

FR  |  
EN

La thèse présentée ici a pour objectif de développer des matériaux innovants et performants pour la fabrication de la couche tampon des cellules photovoltaïques en couches minces à base de Cu(In,Ga)Se2 (CIGS). Pour la première fois, des couches minces d'In2(S,O)3 et de Zn(O,S) ont été réalisées par dépôt chimique en phase vapeur par flux alternés assisté par plasma afin de remplacer la couche tampon traditionnelle en sulfure de cadmium. En apportant des espèces plus réactives, cette méthode permet d'effectuer des réactions qui ne pourraient pas avoir lieu par procédé thermique. La comparaison des deux procédés a permis l'évaluation de leurs atouts et de leurs contraintes. Par exemple, l'In2(S,O)3 n'a pu être synthétisé que par cette méthode, via des mécanismes surfaciques d'échange entre des radicaux d'oxygène et le soufre de l'In2S3. Pour augmenter les performances des cellules CIGS/In2(S,O)3 jusqu'à 11,9%, le procédé de synthèse initial a été amélioré en corrélant les études de Spectroscopie Photoélectronique X et celles de spectrométrie de masse. En parallèle, il a été montré que la température de croissance avait un effet notable sur les propriétés opto-électroniques des cellules CIGS/Zn(O,S) et qu'il existait des optimums de performance à basse (Tdep < 160°C) et haute (Tdep > 200°C) températures. L'optimum situé à basse température s'explique par les propriétés favorables des couches minces de Zn(O,S) synthétisées par procédé thermique, tandis que celui situé à haute température est dû à l'existence de mécanismes d'interdiffusion à l'interface Zn(O,S)/CIGS. Un rendement de 15,6% a pu ainsi être obtenu.